Organometallics 2004, 23, 3763-3765
3763
Dia ster eoselective Oxid a tive Ad d ition of Allyl Ch lor id e
to P la n a r -Ch ir a l Cyclop en ta d ien yl-Ru th en iu m
Com p lexes
Yuji Matsushima, Kiyotaka Onitsuka,* and Shigetoshi Takahashi
The Institute of Scientific and Industrial Research, Osaka University,
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, J apan
Received May 27, 2004
Summary: The reaction of planar-chiral cyclopentadi-
enyl-ruthenium complexes with allyl chloride at room
temperature resulted in the diastereoselective formation
of π-allyl-ruthenium complexes, in which the chirality
at the Ru center depended on the substituent at the
4-position of the cyclopentadienyl group. Epimerization
at the Ru center of π-allyl complexes at 90 °C suggested
that the diastereoselectivity was under kinetic control.
ethyl carbonate. However, no reaction took place and
the starting materials were recovered. In the reaction
with 1,3-diphenyl-2-propenyl chloride, the starting ma-
terials were consumed, but we could not confirm the
structure of the products. We next examined the reac-
tion using allyl chloride with no substituents.
Treatment of the Cp′Ru complex 1a with 10 equiv of
allyl chloride in acetone at room temperature led to the
formation of a π-allyl complex (2a ) in 83% yield (eq 1).5,6
Enantioselective allylic substitution is a representa-
tive asymmetric reaction catalyzed by transition-metal
complexes because of its high productivity and applica-
tion in the total synthesis of a variety of biologically
important molecules.1 Although Pd-based catalysts have
been widely used in enantioselective allylic substitution,
recent studies have shown that other transition metals
can be used with efficiencies similar to or better than
those of Pd catalysts.2,3 Recently, we reported the first
example of Ru-catalyzed asymmetric allylic substitution
by using planar-chiral cyclopentadienyl (Cp′) com-
plexes.4 To obtain more information on the origin of the
enantioselectivity in these catalytic reactions, we ex-
amined some stoichiometric reactions of planar-chiral
Cp′Ru complexes with allylic compounds. We report
here the reaction of planar-chiral Cp′Ru complexes with
allyl chlorides to give π-allyl complexes with metal-
centered chirality and high diastereoselectivity.
We started our investigation with the reaction of
planar-chiral Cp′Ru complexes (1) with 1,3-diphenylallyl
Since complex 2a has a three-legged piano-stool struc-
ture with different ligands, metal-centered chirality is
generated at the Ru atom.7 Thus, complex 2a consisted
of two diastereomers, and the 31P NMR spectrum
suggested that the ratio was 89% de. The highly
diastereoselective oxidative addition to planar-chiral Cp′
complexes of Rh and Ir has also been reported by other
groups.8 In the differential NOE spectra of the major
product, irradiation of the methyl signal at the 4-posi-
tion on the Cp′ ring gave rise to NOE signals of the allyl
protons at the anti position, whereas the NOE signal
that was assignable to one of the two syn allylic protons
was observed upon irradiation of the methyl signal at
the 2-position of the Cp′ group.9 These results clearly
(1) For recent reviews, see: (a) Sesay, S. J .; Williams, J . M. J . Adv.
Asymmetric Synth. 1998, 3, 235. (b) Trost, B. M.; Lee, C. In Catalytic
Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; VCH: New York, 2000;
p 593. (c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(2) Mo and W catalysts: (a) Lloyd-J ones, G. C.; Pfaltz, A. Angew.
Chem., Int. Ed. Engl. 1995, 34, 462. (b) Trost, B. M.; Hachiya, I. J .
Am. Chem. Soc. 1998, 120, 1104. (c) Glorius, F.; Pfaltz, A. Org. Lett.
1999, 1, 141. (d) Belda, O.; Kaiser, N.-F.; Bremberg, U.; Larhed, M.;
Hallberg, A.; Moberg, C. J . Org. Chem. 2000, 65, 5868. (e) Kasier, N.-
F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew.
Chem., Int. Ed. 2000, 39, 3596. (f) Trost, B. M.; Dogra, K.; Hachiya, I.;
Emura, T.; Hughes, D. L.; Krska, S.; Reamer, R. A.; Palucki, M.;
Yasuda, N.; Reider, P. J . Angew. Chem., Int. Ed. 2002, 41, 1929. (g)
Hughes, D. L.; Palucki, M.; Yasuda, N.; Reamer, R. A.; Reider, P. J . J .
Org. Chem. 2002, 67, 2762. (h) Trost, B. M.; Dogra, K. J . Am. Chem.
Soc. 2002, 124, 7256. (i) Belda, O.; Moberg, C. Acc. Chem. Res. 2004,
37, 159.
(3) Rh and Ir catalysts: (a) J anssen, J . P.; Helmchen, G. Tetrahedron
Lett. 1997, 38, 8025. (b) Bartels, B.; Helmchen, G. Chem. Commun.
1999, 741. (c) Bartels, B.; Garc´ıa-Yebra, C.; Rominger, F.; Helmchen,
G. Eur. J . Inorg. Chem. 2002, 2569. (d) Ohmura, T.; Hartwig, J . F. J .
Am. Chem. Soc. 2002, 124, 15164. (e) Hayashi, T.; Okada, A.; Suzuka,
T.; Kawatsura, M. Org. Lett. 2003, 5, 1713. (f) Lo´pez, F.; Ohmura, T.;
Hartwig, J . F. J . Am. Chem. Soc. 2003, 125, 3426. (g) Fischer, C.;
Defieber, C.; Suzuki, T.; Carreira, E. M. J . Am. Chem. Soc. 2004, 126,
1628.
(5) (a) Albers, M. O.; Liles, D. C.; Robinson, D. J .; Shaver, A.;
Singleton, E. Organometallics 1987, 6, 2347. (b) Nagashima, H.; Mukai,
K.; Shiota, Y.; Yamaguchi, K.; Ara, K.; Fukahori, T.; Suzuki, H.; Akita,
M.; Morooka, Y.; Itoh, K. Organometallics 1990, 9, 799. (c) Kondo, T.;
Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organometallics 1995,
14, 1945. (d) Ru¨ba, E.; Simanko, W.; Mauthner, K.; Soldouzi, K. M.;
Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics
1999, 18, 3843. (e) Kondo, H.; Yamaguchi, Y.; Nagashima, H. Chem.
Commun. 2000, 1075. (f) Mbaye, M. D.; Demerseman, B.; Renaud, J .-
L.; Toupet, L.; Bruneau, C. Angew. Chem., Int. Ed. 2003, 42, 5066.
(4) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Taka-
hashi, S. J . Am. Chem. Soc. 2001, 123, 10405.
10.1021/om049616d CCC: $27.50 © 2004 American Chemical Society
Publication on Web 07/08/2004