Organic Letters
Experimental procedures, additional tables, character-
Letter
(5) Selected papers for phenanthridinones: (a) Ma, Z.; Xiang, Z.;
Luo, T.; Lu, K.; Xu, Z.; Chen, J.; Yang, Z. Synthesis of Functionalized
Quinolines via Ugi and Pd-Catalyzed Intramolecular Arylation
Reactions. J. Comb. Chem. 2006, 8, 696. (b) Wang, G. W.; Yuan, T.
T.; Li, D. D. One-Pot Formation of C-C and C-N Bonds through
Palladium-Catalyzed Dual C-H Activation: Synthesis of Phenanthri-
dinones. Angew. Chem., Int. Ed. 2011, 50, 1380. (c) Karthikeyan, J.;
Cheng, C. H. Synthesis of Phenanthridinones from N-Methoxyben-
zamides and Arenes by Multiple Palladium-Catalyzed C-H Activation
Steps at Room Temperature. Angew. Chem., Int. Ed. 2011, 50, 9880.
(d) Zhang, Z.; Liao, L. L.; Yan, S. S.; Wang, L.; He, Y. Q.; Ye, J. H.;
Li, J.; Zhi, Y. G.; Yu, D. G. Lactamization of sp2 C-H Bonds with CO2:
Transition-Metal-Free and Redox-Neutral. Angew. Chem., Int. Ed.
2016, 55, 7068. (e) Thorat, V. H.; Upadhyay, N. S.; Murakami, M.;
Cheng, C. H. Nickel-Catalyzed Denitrogenative Annulation of 1,2,3-
Benzotriazin-4-(3H)-ones with Benzynes for Construction of
Phenanthridinone Scaffolds. Adv. Synth. Catal. 2018, 360, 284.
(6) Selected papers for benzofluorenones: (a) Shabashov, D.;
Maldonado, J. R. M.; Daugulis, O. Carbon-Hydrogen Bond
Functionalization Approach for the Synthesis of Fluorenones and
ortho-Arylated Benzonitriles. J. Org. Chem. 2008, 73, 7818.
(b) Chinnagolla, R. K.; Jeganmohan, M. Regioselective Ortho-
Arylation and Alkenylation of N-Alkyl Benzamides with Boronic
Acids via Ruthenium-Catalyzed C-H Bond Activation: An Easy Route
to Fluorenones Synthesis. Org. Lett. 2012, 14, 5246. (c) Ruzi, R.;
Zhang, M.; Ablajan, K.; Zhu, C. Photoredox-Catalyzed Deoxygenative
Intramolecular Acylation of Biarylcarboxylic Acids: Access to
Fluorenones. J. Org. Chem. 2017, 82, 12834. (d) Yan, B. Y.; Fu, Y.;
Zhu, H.; Chen, Z. Y. Synthesis of Divergent Benzo[b]fluorenones
through Cycloaromatization Reactions of 1,5-Enynols and 1,5-
Diynols. J. Org. Chem. 2019, 84, 4246.
(7) Selected papers for diindenothiophene: (a) Rudebusch, G. E.;
Fix, A. G.; Henthorn, H. A.; Vonnegut, C. L.; Zakharov, L. N.; Haley,
M. M. Quinoidal diindenothienoacenes: synthesis and properties of
new functional organic materials. Chem. Sci. 2014, 5, 3627. (b) Shi,
X.; Burrezo, P. M.; Lee, S.; Zhang, W.; Zheng, B.; Dai, G.; Chang, J.;
Lopez Navarrete, J. T.; Huang, K.-W.; Kim, D.; Casado, J.; Chi, C.
Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical
characters: syntheses, structures and chain length dependent physical
properties. Chem. Sci. 2014, 5, 4490. (c) Christensen, M. A.;
Rudebusch, G. E.; Parker, C. R.; Andersen, C. L.; Kadziola, A.; Haley,
M. M.; Hammerich, O.; Nielsen, M. B. Diindenothienoacene-
tetrathiafulvalene redox systems. RSC Adv. 2015, 5, 49748.
(8) (a) Ilies, L.; Konno, E.; Chen, Q.; Nakamura, E. Iron-Catalyzed
ortho Monoarylation of Benzamide Derivatives. Asian J. Org. Chem.
2012, 1, 142. (b) Gu, Q.; Al Mamari, H. H.; Graczyk, K.; Diers, E.;
Ackermann, L. Iron-Catalyzed C(sp2)-H and C(sp3)-H Arylation by
Triazole Assistance. Angew. Chem., Int. Ed. 2014, 53, 3868. (c) Shang,
R.; Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed C (sp2)−H Bond
Functionalization with Organoboron Compounds. J. Am. Chem. Soc.
2014, 136, 14349. (d) Doba, T.; Matsubara, T.; Ilies, L.; Shang, R.;
Nakamura, E. Homocoupling-free iron-catalysed twofold C−H
activation/cross-couplings of aromatics via transient connection of
reactants. Nat. Catal. 2019, 2, 400.
ization data, and NMR spectra for products (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
†Y.-M.W. and M.-F.W. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We acknowledge the National Science Foundation of China
(21372031 and 21572022).
■
REFERENCES
■
(1) For selected reviews, see: (a) Chen, X.; Engle, K. M.; Wang, D.
H.; Yu, J. Q. Palladium(II)-Catalyzed C−H Activation/C−C Cross-
Coupling Reactions: Versatility and Practicality. Angew. Chem., Int. Ed.
2009, 48, 5094. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R.
Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-
H Bond Cleavage. Angew. Chem., Int. Ed. 2009, 48, 9792. (c) Wencel-
̈
Delord, J.; Droge, T.; Liu, F.; Glorius, F. Towards mild metal-
catalyzed C−H bond activation. Chem. Soc. Rev. 2011, 40, 4740.
(d) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J.
Mild metal-catalyzed C−H activation: examples and concepts. Chem.
̈
Soc. Rev. 2016, 45, 2900. (e) Sambiagio, C.; Schonbauer, D.; Blieck,
R.; DaoHuy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.;
Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. A
̈
comprehensive overview of directing groups applied in metal
catalysed C−H functionalization chemistry. Chem. Soc. Rev. 2018,
47, 6603. (f) Gandeepan, P.; Muller, T.; Zell, D.; Cera, G.; Warratz,
S.; Ackermann, L. 3d Transition Metals for C-H Activation. Chem.
Rev. 2019, 119, 2192.
(2) For selected reviews, see: (a) Zhu, R. Y.; Farmer, M. E.; Chen, Y.
Q.; Yu, J. Q. A Simple and Versatile Amide Directing Group for C-H
Functionalizations. Angew. Chem., Int. Ed. 2016, 55, 10578. (b) Das,
R.; Kumar, G. S.; Kapur, M. Amides as Weak Coordinating Groups in
Proximal C−H Bond Activation. Eur. J. Org. Chem. 2017, 2017, 5439.
(3) For selected reviews, see: (a) Sun, C. L.; Li, B. J.; Shi, Z. J. Direct
C-H Transformation via Iron Catalysis. Chem. Rev. 2011, 111, 1293.
(b) Cera, G.; Ackermann, L. Iron-Catalyzed C−H Functionalization
Processes. Top. Curr. Chem. 2016, 374, 57. (c) Shang, R.; Ilies, L.;
Nakamura, E. Iron-Catalyzed C−H Bond Activation. Chem. Rev.
2017, 117, 9086. (d) Piontek, A.; Bisz, E.; Szostak, M. Iron-catalyzed
cross-coupling in the synthesis of pharmaceuticals: In pursuit of
sustainability. Angew. Chem., Int. Ed. 2018, 57, 11116.
(4) Selected papers for benzocoumarins: (a) Zhang, W.; Wilke, B. I.;
Zhan, J.; Watanabe, K.; Boddy, C. N.; Tang, Y. A New Mechanism for
Benzopyrone Formation in Aromatic Polyketide Biosynthesis. J. Am.
Chem. Soc. 2007, 129, 9304. (b) Lucas, R.; Alcantara, D.; Morales, J.
C. A concise synthesis of glucuronide metabolites of urolithin-B,
resveratrol, and hydroxytyrosol. Carbohydr. Res. 2009, 344, 1340.
(c) Demuner, A. J.; Barbosa, L. C. A.; Miranda, A. C. M.; Geraldo, G.
C.; Da Silva, C. M.; Giberti, S.; Bertazzini, M.; Forlani, G. The Fungal
Phytotoxin Alternariol 9-Methyl Ether and Some of Its Synthetic
Analogues Inhibit the Photosynthetic Electron Transport Chain. J.
Nat. Prod. 2013, 76, 2234. (d) Zhang, L.; Zhang, Z.; Hong, J.; Yu, J.;
Zhang, J.; Mo, F. Oxidant-Free C(sp2)−H Functionalization/C−O
Bond Formation: A Kolbe Oxidative Cyclization Process. J. Org.
Chem. 2018, 83, 3200. (e) Wang, Z.; Yang, M.; Yang, Y. Ir(III)-
Catalyzed Oxidative Annulation of Phenylglyoxylic Acids with
Benzo[b]thiophenes. Org. Lett. 2018, 20, 3001.
(9) There has been only one example of Fe-catalyzed ortho C−H
arylation of benzamide using a two-substituted arylating reagent so
far; see ref 8c. For the other example catalyzed by cobalt, see: (a) Li,
J.; Ackermann, L. Cobalt-Catalyzed C-H Arylations with Weakly-
Coordinating Amides and Tetrazoles: Expedient Route to Angio-
tensin-II-Receptor Blockers. Chem. - Eur. J. 2015, 21, 5718.
(10) For a synthesis of benzocoumarins via Co-catalyzed ortho C−H
arylation of oxazolines, see: Mei, R. H.; Ackermann, L. Cobalt-
Catalyzed C-H Functionalizations by Imidate Assistance with Aryl
and Alkyl Chlorides. Adv. Synth. Catal. 2016, 358, 2443.
(11) (a) Liu, K. M.; Liao, L. Y.; Duan, X. F. Iron catalyzed oxidative
assembly of N-heteroaryl and aryl metal reagents using oxygen as
anoxidant. Chem. Commun. 2015, 51, 1124. (b) Liu, K. M.; Wei, J.;
Duan, X. F. Iron-catalyzed oxidative biaryl cross-couplings via mixed
diaryltitanates: significant influence of the order of combining aryl
D
Org. Lett. XXXX, XXX, XXX−XXX