Journal of the American Chemical Society
Page 4 of 5
In summary, enantioselective SOMO-organocatalysis has
1
2
3
4
5
6
7
8
been leveraged for the development of a potentially general
approach toward the synthesis of stereochemically rich
carbocycles and heterocycles from achiral precursors. This
protocol bears analogy to the venerable carbonyl-ene cyclization,
yet provides access to a differentiated array of complex cyclic
scaffolds incorporating valuable aldehyde and olefin functional
handles. We anticipate that this method will find broad
application among practitioners of organic synthesis.
9
Acknowledgement. Financial support was provided by the
NIHGMS (R01 GM103558-01) and kind gifts from Merck,
Amgen and Abbvie.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information Available. Experimental procedures
and spectral data are provided. This material is available free of
References
(1) Companyó, X; Alba, A.-N.; Rios, R. Targets in Heterocyclic Systems, Vol.
13. Attanasi, O. A. Ed. Royal Society of Chemistry: London, 2009; pp 147-
174.
(2) a) Monfette, S.; Fogg, D. Chem. Rev. 2009, 109, 3783. b) Buffatt, M. G. P.
Tetrahedron. 2004, 60, 1701. c) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
(3) a) Snider, B. B. Comprehensive Organic Synthesis, Vol 2. Trost, B. M.;
Fleming, I. Ed. Pergamon: Oxford, 1991: pp 527-561. b) Oppolzer, W.
Angew. Chem. Int. Ed. 1984, 23, 876. c) Snider, B. B. Acc. Chem. Res. 1980,
13, 426.
(4) Some recent examples: a) Terida, M.; Soga, K.; Momiyama, N. Angew. Chem.
Int. Ed. 2008, 47, 4122. b) Kezuka, S.; Ikeno, T.; Yamada, T. Org. Lett. 2001,
3, 1937. c) Zheng, K.; Shi, J.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2008, 130,
15770. d) Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa, K. J. Am. Chem.
Soc. 2007, 129, 12950. e) Koh, J. H.; Larsen, A.; Gagné, M. R. Org. Lett.
2001, 3, 1233. f) Evans, D. A.; Wu, J. J. Am. Chem. Soc. 2005, 127, 8006. g)
Rueping, M.; Thiessman, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem. Int.
Ed. 2008, 47, 6798. h) Mikami, K.; Kakuno, K.; Aikawa, K. Angew. Chem.
Int. Ed. 2005, 44, 7257. i) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92,
1021. j) Zhao, J.-F.; Tjan, T.-B. W.; Loh, T.-P. Tetrahedron Lett. 2010, 5649.
k) Grachan, M. L.; Tudge, M. T.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2008,
47, 1469. l) Bigot, A.; Breuninger, D.; Breit, B. Org. Lett. 2008, 10, 5321.
(5) a) Mikami, K.; Sawa, E.; Terada, M. Tetrahedron: Asymmetry. 1991, 2, 1403.
b) Andersen, E. D.; Ernat, J. J.; Nguyen, M. P.; Palma, A. C.; Mohan, R. S.
Tetrahedron Lett. 2005, 46, 7747. c) Oppolzer, W.; Snieckus, V. Angew.
Chem. Int. Ed. 1978, 17, 476. d) Cariou, C. A. M.; Kariuki, B. M.; Snaith, J. S.
Org. Biomol. Chem. 2008, 6, 3337. e) Williams, J. T.; Bahia, P. S.; Kariuki, B.
M.; Spencer, N.; Philp, D.; Snaith, J. S. J. Org. Chem. 2006, 71, 2460. f)
Suzuki, T.; Kobayashi, S. Org. Lett. 2010, 12, 2920. g) Nakagawa, K.; Okano,
T.; Ozono, K.; Kato, S.; Kubodera, N.; Ohba, S.; Itoh, Y.; Mikami, K. J.
Fluor. Chem. 2007, 128, 654.
(6) Jang, H. Y.; Hong, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129,
7004.
(7) a) Beeson, T. D.; Mastracchio, A.; Hong, J.-B. Ashton, K.; MacMillan,
D.W.C. Science 2007, 316, 582. b) Mastracchio, A.; Warkentin, A. A.; Walji,
A. M.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. 2010, 107, 20648. c)
Pham, P. V.; Ashton, K.; MacMillan, D. W. C. Chem. Sci. 2011, 2, 1470.
(8) Jang, H.; Hong, J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004.
(9) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 398.
(10) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C. Angew.
Chem. Int. Ed. 2009, 48, 5121.
(11) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2009, 131, 11640.
(12) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
(13) a) Jui, N. T.; Lee, E. C. Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132,
10015. b) Jui, N. T.; Garber, J. A. O.; Finelli, F. G.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2012, 134, 1140.
(14) Murphy, J. A. The Radical-Polar Crossover Reaction. In Radicals in Organic
Synthesis; Renaud, P.; Sibi, M. P. Eds.; Wiley-VCH: Weinheim, 2001; pp
298-316.
(15) a) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical
Reactions: Concepts, Guidelines, and Synthetic Applications. VCH: New
York, 1995. b) Renaud, P. Stereoselectivity of Radical Reactions: Cyclic
Systems. In Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P. Eds.;
Wiley-VCH: Weinheim, 2001; pp 298-316.
(16) Intramolecular cyclizations using SOMO catalysis have previously been
accomplished using π-rich activated olefins such as allylsilanes. This study
expands the scope and utility of the enantioselective SOMO oxidation
pathway via the use of simple olefins.
(17) Unpublished results from our lab have indicated that the initial radical
coupling step is reversible when oxidation of the resulting radical to a cation is
relatively slow.
4
ACS Paragon Plus Environment