Organometallics
ARTICLE
9H, PMe3). 13C{1H} NMR (101 MHz, toluene-d8, ꢀ15 °C): δ 176.4
(s, CO2), 143.9 (s, C7), 124.0 (s, C2), 112.7 (s, C8), 69.4 (s, C3), 47.8
(s, C6), 42.6 (s, C1), 24.1 (s, C9), 23.8 (s, C4), 14.0 (d, JCꢀP = 24 Hz,
PCH3). 31P{1H} NMR (121 MHz, C6D6): δ ꢀ11.4 (s).
(allyl)2Ni(PPh3) (3), or (allyl)2Ni(NHC) (4) was dissolved in 0.4 mL
of toluene-d8 in a J. Young NMR tube at ꢀ78 °C. The mixture was then
degassed using three freezeꢀpumpꢀthaw cycles, and excess 1 atm CO2
was added via a dual-manifold Schlenk line at ꢀ78 °C. No reaction was
observed with CO2 before decomposition of the starting material
occurred at approximately ꢀ10 °C.
(η3-2-methylallyl)(η1-CO2C4H7)Ni(PEt3) (11). To a solution of
(2-methylallyl)2Ni (225 mg, 1.33 mmol) in toluene (2 mL)
at ꢀ78 °C was added PEt3 (0.20 mL, 1.33 mmol). The mixture was
then degassed using three freezeꢀpumpꢀthaw cycles and warmed
to ꢀ40 °C. Excess 1 atm CO2 was added via a dual-manifold Schlenk
line at ꢀ40 °C. The mixture was slowly warmed to room temperature.
After 3 h the mixture was evaporated to dryness to give 11 as a brown-
orangeoil. Yield: 430mg(97.5%). Anal. Calcd(found) for C15H29O2PNi:
’ ASSOCIATED CONTENT
S
Supporting Information. Figures giving NMR spectra of
b
selected compounds, tables and CIF files giving details of the
X-ray structures, and tables giving xyz coordinates for optimized
structures. This material is available free of charge via the Internet
1
C, 54.42 (51.19); H, 8.83 (8.64). The H NMR spectrum of 11 is
provided in the Supporting Information.
IR (cmꢀ1): 1580 (νasym,CO ), 1284 (νsym,CO ). 1H NMR (500 MHz,
2
2
toluene-d8): δ 4.93 (s, 1H, H8), 4.87 (s, 1H, H80), 3.20 (s, 2H, H6), 2.70
(br s, 2H, H1 and H3), 2.15 (br s, 2H, H10 and H30, overlapping with
solvent), 2.02 (s, 3H, H9), 1.98 (s, 3H, H4), 1.20 (m, 6H, PCH2CH3),
0.89 (m, 9H, PCH2CH3). 13C{1H} NMR (101 MHz, toluene-d8):
δ 175.5 (s, CO2), 143.6 (s, C7), 123.3 (s, C2), 111.8 (s, C8), 47.7
(s, C6), 23.3 (s, C4), 23.1 (s, C9), 15.9 (d, PCH2, JCꢀP = 17 Hz), 8.14
(s, PCH2CH3). 31P{1H} NMR (121 MHz, C6D6): δ ꢀ19.1 (s).
(η3-2-methylallyl)(η1-CO2C4H7)Ni(PPh3) (12). To a solution of
(2-methylallyl)2Ni (12.1 mg, 0.086 mmol) in toluene (4 mL) at ꢀ78 °C
was added PPh3 (23 mg, 0.086 mmol). The mixture was then degassed
using three freezeꢀpumpꢀthaw cycles and warmed to ꢀ40 °C. Excess
1 atm CO2 was added via a dual-manifold Schlenk line at ꢀ40 °C. The
mixture was slowly warmed to room temperature. After 10 h the mixture
was evaporated to dryness. The resulting residue was extracted with
pentane, and the extract was dried to give 12 as an orange powder. Yield:
10.1 mg (30.1%). Anal. Calcd (found) for C27H29O2PNi: C, 68.25
(68.04); H, 6.15 (5.93).
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: nilay.hazari@yale.edu.
’ REFERENCES
(1) United States Department of Energy, Energy Information
Administration. International Energy Annual 2010, July 2010; EIA-0484.
(2) Jessop, P. G.; Joo, F.; Tai, C.-C. Coord. Chem. Rev. 2004,
248, 2425.
(3) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975.
(4) Correa, A.; Martín, R. Angew. Chem., Int. Ed. 2009, 48, 6201.
(5) Sakakura, T.; Kohnoa, K. Chem. Commun. 2009, 1312.
(6) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388.
(7) Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2010,
49, 6254.
(8) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010, 39, 3347.
(9) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021.
(10) Shi, M.; Nicholas, K. M. J. Am. Chem. Soc. 1997, 119, 5057.
(11) Franks, R. J.; Nicholas, K. M. Organometallics 2000, 19, 1458.
(12) Johansson, R.; Jarenmark, M.; Wendt, O. F. Organometallics
2005, 24, 4500.
(13) Johansson, R.; Wendt, O. F. Dalton Trans. 2007, 488.
(14) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc.
2006, 128, 8706.
IR (cmꢀ1): 1587 (νasym,CO ), 1360 (νsym,CO ). 1H NMR (500 MHz,
2
C6D6): δ 7.58 (br s) and 7.012(br s) (15H, Ph), 4.86 (m, 2H, H8), 3.08
(s, 2H, H6), 2.62 (br s, 2H, H1 and H3) and 2.34 (br s, 4H, H10 and
H30), 2.02 (s, 3H, H9), 1.85 (s, 3H, H4). 13C{1H} NMR (125.8 MHz,
C6D6): δ 176.6 (s, CO2), 145.8 (s, C7), 143.6 (s, C2), 134.5, 134.4,
129.7, 129.1, and 126.0 (Ph), 110.8 (s, C8), 59.8 (s, C3), 51.5 (s, C1),
47.7 (s, C6), 24.7 (s, C9), 22.8 (s, C4). 31P{1H} NMR (121 MHz,
C6D6): δ 24.82 (s).
(15) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.
(16) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008,
47, 5792.
(17) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.
(18) Correa, A.; Martín, R. J. Am. Chem. Soc. 2009, 131, 15974.
(19) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010,
132, 8858.
(η3-2-methylallyl)(η1-CO2MeC3H4)Ni(NHC) (13). To a solution of
(2-methylallyl)2Ni (168 mg, 1.0 mmol) in toluene (2 mL) at ꢀ78 °C
was added NHC (388 mg, 1.0 mmol), and the mixture was stirred for 2 h.
The mixture was then degassed using three freezeꢀpumpꢀthaw cycles
and warmed to ꢀ40 °C. Excess 1 atm CO2 was added via a dual-manifold
Schlenk line at ꢀ40 °C. The mixture was slowly warmed to room
temperature. After it was stirred for 1 h, the mixture was evaporated to
dryness to give 13 as a yellow powder. Colorless single crystals for X-ray
analysis were grown from toluene/pentane at ꢀ35 °C. Yield: 445 mg
(74%). Anal. Calcd (found) for C36H50N2O2Ni: C, 71.89 (71.76);
H, 8.38 (8.61).
(20) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem.
Soc. 2010, 132, 8872.
(21) Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin,
C. S. J.; Nolan, S. P. Angew. Chem., Int. Ed. 2010, 49, 8674.
(22) Wu, J.; Hazari, N. Chem. Commun. 2011, 47, 1069.
(23) Braunstein, P.; Matt, D.; Nobel, D. J. Am. Chem. Soc. 1988,
110, 3207.
(24) Pitter, S.; Dinjus, E. J. Mol. Catal. A: Chem. 1997, 125, 39.
(25) Aresta, M.; Quaranta, E.; Tommasi, I. New J. Chem. 1994,
18, 133.
(26) Johnson, M. T.; Johansson, R.; Kondrashov, M. V.; Steyl, G.;
Ahlquist, M. S. G.; Roodt, A.; Wendt, O. F. Organometallics 2010,
29, 3521.
(27) Wu, J.; Green, J. C.; Hazari, N.; Hruszkewycz, D. P.; Incarvito,
C. D.; Schmeier, T. J. Organometallics 2010, 29, 6369.
(28) Darensbourg, D. J.; Darensbourg, M. Y.; Goh, L. Y.; Ludvig, M.;
Wiegreffe, P. J. Am. Chem. Soc. 1987, 109, 7539.
(29) Laird, M. F.; Pink, M.; Tsvetkov, N. P.; Fan, H.; Caulton, K. G.
Dalton Trans. 2009, 1283.
IR (cmꢀ1): 1602 (νasym,CO ), 1327 (νsym,CO ). 1H NMR (500 MHz,
2
toluene-d8, ꢀ35 °C): δ 7.23 (2t, 2H, H14), 7.14 (m, 4H, H13 and H15,
overlapping with solvent peak), 6.48 (s, 2H, H10), 5.03 (s, 2H, H8), 3.16
(m, 4H, H17 and H21), 2.91 (br s, 2H, H6), 3.69 (s, 1H), 2.53 (s, 1H),
1.61 (s, 1H) and 0.85 (s, 1H), 2.62 (H1 and H3), 2.05 (s, 3H, H9), 1.73
(s, 3H, H4), 1.45 (br s, 12H, H18, H19, H20, or H22), 1.03 (m, 12 H,
H18, H19, H20, or H22). 13C{1H} NMR (125.8 MHz, C6D6): δ 188.7
(s, C23), 176.2 (s, C5), 146.4 (s, C11), 144.6 (s, C7), 137.1 (s, C16),
130.4 (s, C14), 128.7 (s, C2), 124.9 (s, C10), 124.6 (s, C12 and C16),
111.5 (s, C8), 47.8 (s, C6), 29.1 (s, C21), 26.4 (s, C20 and C22), 23.8
(s, C9), 23.2 (s, C18 and C19), 22.3 (s, C4).
Reactions between CO2 and (allyl)2Ni(L) Complexes. In an
typical reaction 8 mg of (allyl)2Ni(PMe3) (1), (allyl)2Ni(PEt3) (2),
3149
dx.doi.org/10.1021/om2002238 |Organometallics 2011, 30, 3142–3150