11342 J. Phys. Chem. B, Vol. 108, No. 31, 2004
D’Souza et al.
Center; Deisenhofer, J., Norris, J. R., Eds.; Academic Press: San Diego,
1993; Vol. II, pp 49-70. (d) Langen, R.; Chang, I.-J.; Germanas, J. P.;
Richards, J. H.; Winkler, J. R.; Gray, H. B. Science 1995, 268, 1733. (e)
Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L. Nature 1999, 402, 47.
(3) (a) McLendon, G.; Hake, R. Chem. ReV. 1992, 92, 481. (b) Gould,
I. R.; Farid, S. Acc. Chem. Res. 1996, 29, 522. (c) Mataga, N.; Miyasaka,
H. AdV. Chem. Phys. 1999, 107, 431. (d) Lewis, F. D.; Letsinger, R. L.;
Wasielewski, M. R. Acc. Chem. Res. 2001, 34, 159.
(4) (a) Miller, J. R.; Calcaterra, L. T.; Closs, G. L. J. Am. Chem. Soc.
1984, 106, 3047. (b) Closs, G. L.; Miller, J. R. Science 1988, 240, 440. (c)
Connolly, J. S.; Bolton, J. R. In Photoinduced Electron Transfer; Fox, M.
A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part D, pp 303-393.
(d) Wasielewski, M. R. In Photoinduced Electron Transfer; Fox, M. A.,
Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part A, pp 161-206.
(5) (a) Wasielewski, M. R. Chem. ReV. 1992, 92, 435. (b) Bixon, M.;
Fajer, J.; Feher, G.; Freed, J. H.; Gamliel, D.; Hoff, A. J.; Levanon, H.;
Mo¨bius, D.; Norris, J. R.; Nechushtai, R.; Scherz, A.; Sessler, J. L.; Stehlik,
D. H. A. Isr. J. Chem. 1992, 32, 369. (c) Gust, D.; Moore, T. A.; Moore,
A. L. Acc. Chem. Res. 1993, 26, 198. (d) Kurreck, H.; Huber, M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 849. (e) Gust, D.; Moore, T. A.; Moore, A.
L. Acc. Chem. Res. 2001, 34, 40.
2H), 8.22 (m, 6H), 7.76 (m, 9H), 4.69 (t, 2H), 4.34 (t, 2H),
4.09 (s, 5H), -2.77 (br s, 2H); UV-vis in CHCl3, λmax nm,
422, 516, 551, 592, 648; ESI mass in CH2Cl2 calcd., 917.8;
found, 918.3.
5,10,15-Triphenyl-20-[4′-(amidophenylferrocene)phenyl]-
porphyrinatozinc (3).16e To a solution of 5,10,15-triphenyl-
20-[4′-(amidophenylferrocene)phenyl]porphyrin (25 mg, 0.03
mmol) dissolved in CHCl3 (50 mL) was added zinc acetate (30
mg, 0.14 mmol) dissolved in MeOH (20 mL), and the solution
was stirred for 1 h. The solution was then washed with water
and dried over anhydrous sodium sulfate. The compound was
purified over silica gel column using CHCl3/hexanes (40:60 v/v)
as eluent. Yield 95%; 1H NMR (CDCl3), δ ppm, 8.96 (m, 8H),
8.24 (m, 8H), 7.76 (m, 11H), 4.70 (s, 2H), 4.36 (s, 2H), 4.10
(s, 5H); UV-vis in CHCl3, λmax nm, 423, 551, 594; ESI mass
in CH2Cl2 calcd., 978.8; found, 979.3.
Instrumentation. The UV-vis spectral measurements were
carried out with a Shimadzu Model 1600 UV-vis spectropho-
tometer. The fluorescence emission was monitored by using a
Spex Fluorolog-τ spectrometer. A right-angle detection method
(6) (a) Harriman, A.; Sauvage, J.-P. Chem. Soc. ReV. 1996, 26, 41. (b)
Blanco, M.-J.; Jime´nez, M. C.; Chambron, J.-C.; Heitz, V.; Linke, M.;
Sauvage, J.-P. Chem. Soc. ReV. 1999, 28, 293. (c) Balzani, V.; Juris, A.;
Venturi, M.; Campagna, S.; Serroni, S. Chem. ReV. 1996, 96, 759. (d)
Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim,
2001.
1
was used. The H NMR studies were carried out on a Varian
(7) (a) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18. (b)
Verhoeven, J. W. AdV. Chem. Phys. 1999, 106, 603. (c) Maruyama, K.;
Osuka, A.; Mataga, N. Pure Appl. Chem. 1994, 66, 867. (d) Osuka, A.;
Mataga, N.; Okada, T. Pure Appl. Chem. 1997, 69, 797. (e) Sun, L.;
Hammarstro¨m, L.; Åkermark, B.; Styring, S. Chem. Soc. ReV. 2001, 30,
36.
(8) (a) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537. (b) Imahori,
H.; Sakata, Y. Eur. J. Org. Chem. 1999, 2445, 5. (c) Guldi, D. M. Chem.
Commun. 2000, 321. (d) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000,
33, 695. (e) Guldi, D. M. Chem. Soc. ReV. 2002, 31, 22. (f) Meijer, M. D.;
van Klink, G. P. M.; van Koten, G. Coord. Chem. ReV. 2002, 230, 141. (g)
El-Khouly, M. E.; Ito, O.; Smith, P. M.; D’Souza, F. J. Photochem.
Photobiol. C. 2004, 5, 79.
(9) (a) Sessler, J. S.; Wang, B.; Springs, S. L.; Brown, C. T. In
ComprehensiVe Supramolecular Chemistry; Atwood, J. L., Davies, J. E.
D., MacNicol, D. D., Vo¨gtle, F., Eds.; Pergamon: New York, 1996; Chapter
9. (b) Hayashi, T.; Ogoshi, H. Chem. Soc. ReV. 1997, 26, 355. (c) Ward,
M. W. Chem. Soc. ReV. 1997, 26, 365. (d) Piotrowiak, P. Chem. Soc. ReV.
1999, 28, 143.
(10) (a) Introduction of Molecular Electronics; Petty, M. C., Bryce, M.
R., Bloor, D., Eds.; Oxford University Press: New York, 1995. (b)
Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH GmbH: Weinheim,
2001.
(11) (a) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley,
R. E. Nature 1985, 318, 162. (b) Kratschmer, W.; Lamb, L. D.; Fostirop-
oulos, F.; Huffman, D. R. Nature 1990, 347, 345. (c) Fullerene and Related
Structures; Hirsch, A., Ed.; Springer: Berlin, 1999; Vol. 199.
(12) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: Burlington, MA, 2000; Vol. 1-10.
(13) (a) Allemand, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich,
F.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991,
113, 1050. (b) Xie, Q.; Perez-Cordero, E.; Echegoyen, L. J. Am. Chem.
Soc. 1992, 114, 3978.
(14) (a) Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. E.; Diederich,
F.; Fostiropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver,
K. E.; Sensharma, E.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630. (b)
Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. ReV. 1998, 98, 2527.
(c) Prato, M. J. Mater. Chem. 1997, 7, 1097. (d) Diederich, F.; Go´mez-
Lo´pez, M. Chem. Soc. ReV. 1999, 28, 263. (e) Guldi, D. M.; Kamat, P. V.
In Fullerenes; Kadish, K. M., Ruoff, R. S., Eds.; John Wiley & Sons: New
York, 2000; Chapter 5, pp 225-281.
(15) (a) Imahori, H.; Hagiwara, K.; Akiyama, T.; Akoi, M.; Taniguchi,
S.; Okada, T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263,
545. (b) Guldi, D. M.; Asmus, K.-D. J. Am. Chem. Soc. 1997, 119, 5744.
(c) Imahori, H.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O.; Sakata, Y.;
Fukuzumi, S. J. Phys. Chem. A 2001, 105, 325. (d) Vehmanen, V.;
Tkachenko, N. V.; Imahori, H.; Fukuzumi, S.; Lemmetyinen, H. Spectro-
chim. Acta, Part A 2001, 57, 2229.
(16) (a) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen,
D.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1997, 119,
1400. (b) Imahori, H.; Yamada, K.; Hasegawa, M.; Taniguchi, S.; Okada,
T.; Sakata, Y. Angew. Chem., Inter. Ed. Eng. 1997, 36, 2626. (c) Luo, C.;
Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. 2000,
122, 6535. (c) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka,
M.; Ito, O.; Sakata, Y.; Fukuzumi, J. Am. Chem. Soc. 2001, 123, 2607. (d)
Imahori, H.; Guldi, D. M.; Tamaki, K.; Yoshida, Y.; Luo, C.; Sakata, Y.;
300 or 400 MHz spectrometers. Tetramethylsilane (TMS) was
used as an internal standard. Cyclic voltammograms were
recorded on a EG&G Model 263A potentiostat using a three-
electrode system. A platinum button or glassy carbon electrode
was used as the working electrode. A platinum wire served as
the counter electrode, and a Ag wire (Ag/Ag+) was used as the
reference electrode. A ferrocene/ferrocenium redox couple was
used as an internal standard. All the solutions were purged prior
to electrochemical and spectral measurements using argon gas.
The computational calculations were performed by ab initio
B3LYP/3-21G(*) methods with the Gaussian 9824 software
package on high-speed computers. The ESI-mass spectral
analyses of the newly synthesized compounds were performed
by using a Fennigan LCQ-Deca mass spectrometer. For this,
the compounds (about 1 mM concentration) were prepared in
CH2Cl2, freshly distilled over calcium hydride.
Time-Resolved Emission and Transient Absorption Mea-
surements. The picosecond time-resolved fluorescence spectra
were measured using an argon ion pumped Ti:sapphire laser
(Tsunami) and a streak scope (Hamamatsu Photonics). The
details of the experimental setup are described elsewhere.32
Nanosecond transient absorption spectra in the NIR region were
measured by means of laser-flash photolysis; 532-nm light from
a Nd:YAG laser was used as the exciting source, and a Ge-
avalanche-photodiode module was used for detecting the
monitoring light from a pulsed Xe lamp as described in our
previous report.20
Acknowledgment. The authors are thankful to the donors
of the Petroleum Research Fund administered by the American
Chemical Society and National Institutes of Health (GM 59038)
and Grants-in-Aid for Scientific Research on Primary Area (417)
from the Ministry of Education, Science, Sport and Culture of
Japan (to O.I. add Y.A.) for support of this work. P.M.S. is
thankful to the Department of Education for a GAANN
fellowship.
References and Notes
(1) (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811,
265. (b) Marcus, R. A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1111. (c)
Bixon, M.; Jortner, J. AdV. Chem. Phys. 1999, 106, 35. (d) Newton, M. D.
Chem. ReV. 1991, 91, 767.
(2) (a) Winkler, J. R.; Gray, H. B. Chem. ReV. 1992, 92, 369. (b) Moser,
C. C.; Keske, J. M.; Warncke, K.; Farid, R. S.; Dutton, P. L. Nature 1992,
355, 796. (c) Kirmaier, C.; Holton, D. In The Photosynthetic Reaction