COMMUNICATIONS
4S,5S,6S,10S,11S,12S isomer of cytostatin 1 was isolated in
85% yield.
OPG
OPG OTBDPS
OH OTBDPS
OH
OH OPG
OPG OTBDPS
a, b
Synthetic 1 displays a specific rotation of [a]2D0 50 (c
0.114 in [D4]MeOH). Unfortunately, this value can not be
employed to ascertain the absolute configuration of the
natural product because Ishizuka and co-workers did not
report the specific rotation of the isolated sample.[7e]
The phosphatase-inhibiting activity of synthetic 1 was
investigated with p-nitrophenyl phosphate as substrate.[7d]
Isomer 1 inhibited PP2A (IC50 33 nm). This value is one
order of magnitude lower than that of the natural product.
This finding suggests that our assumption about the absolute
configuration of the natural product may be correct, at least
for most of the stereogenic centers.
MeO
O
17
18
c
O
O
O
FmO
P
O
O
OH
d, e
FmO
O
19
20
f, g
O
O
O
O
FmO
FmO
P
In conclusion we have developed an asymmetric synthesis
of the 4S,5S,6S,10S,11S,12S of the PP2A inhibitor cytostatin.
The synthesis is stereochemically flexible and employs only
reagent-controlled transformations, thus allowing access to
each desired isomer of cytostatin in a reliable and efficient
manner. This successful synthesis now opens up new oppor-
tunities for the development of new tools for biological
studies and of new cancer drugs.
P
O
O
OH
I
O
O
h
FmO
FmO
21
22
i
O
-
O
Na+
O
O
P
O
OH
HO
Received: January 31, 2002 [Z18620]
Fm
1
[1] T. Hunter, Cell 2000, 100, 113 127.
[2] For a review, see: A. J. Bridges, Chem. Rev. 2001, 101, 2541 2572.
[3] Z.-Y. Zhang, Curr. Opin. Chem. Biol. 2001, 5, 416 423.
[4] For example, see: J. S. Lazo, D. C. Aslan, E. C. Southwick, K. A.
Cooley, A. P. Ducruet, B. Joo, A. Vogt, P. Wipf, J. Med. Chem. 2001, 44,
4042 4049; R. A. Urbanek, S. J. Suchard, G. B. Steelman, K. S.
Knappenberger, L. A. Sygowski, C. A. Veale, M. J. Chapdelaine, J.
Med. Chem. 2001, 44, 1777 1793.
[5] a) K. Hinterding, D. Alonzo-DÌaz, H. Waldmann, Angew. Chem. 1998,
110, 716 780; Angew. Chem. Int. Ed. 1998, 37, 668 749; b) J. E.
Sheppeck II, C.-M. Gauss, A. R. Chamberlin, Bioorg. Med. Chem.
1997, 5, 1739 1750.
Scheme 3. Synthesis of 1. a) DMP, CH2Cl2, NaHCO3, 93%;
b) (CF3CH2O)2P(O)CH2CO2Me, [18]crown-6, KHMDS, THF, À788C,
92%; c) CBr4, 2-propanol, 828C, 83%; d) (FmO)2PNiPr2, tetrazole,
CH2Cl2/CH3CN, 08C !RT, then I2, pyridine, H2O, THF; 95%; e) HF/
pyridine, THF, room temperature, 28 h, 82%; f) NIS, AgNO3, DMF, room
À
À
À À
temperature, quant.; g) K OOC N N COO K , HOAc, 2-propanol/
dioxane, 63%; h) 5, [PdCl2(CH3CN)2] (cat.), DMF/THF, 62%;
i) NEt3:CH3CN 1:5, room temperature, then Na -Dowex resin, 85%.
DMP Dess–Martin periodinane, HMDS hexamethyldisilazane, NIS
N-iodosuccinimide; PG MOM.
[6] a) D. Brohm, S. Metzger, A. Bhargava, O. M¸ller, F. Lieb, H.
Waldmann, Angew. Chem. 2002, 114, 319 323; Angew. Chem. Int. Ed.
2002, 41, 307 311; b) J. L. Blanchard, D. M. Epstein, M. D. Boisclair,
J. Rudolph, K. Pal, Biorg. Med. Chem. Lett. 1999, 9, 2537-2538; c) M.
Takahashi, K. Dodo, Y. Sugimoto, Y. Aoyagi, Y. Yamada, Y.
Hashimoto, R. Shirai, Biorg. Med. Chem. Lett. 2000, 10, 2571-2574.
[7] a) M. Kawada, M. Amemiya, M. Ishizuka, T. Takeuchi, Biochim.
Biophys. Acta 1999, 1452, 209 217; b) M. Amemiya, M. Ueno, M.
Osono, T. Masuda, N. Kinoshita, C. Nishida, M. Hamada, M. Ishizuka,
T. Takeuchi, J. Antibiot. 1994, 47, 536 540; c) T. Masuda, S.-I.
Watanabe, M. Amemiya, M. Ishizuka, T. Takeuchi, J. Antibiot. 1995,
48, 528 529; d) M. Kawada, M. Amemiya, M. Ishizuka, T. Takeuchi,
Jpn. J. Cancer Res. 1999, 90, 219 225; e) M. Amemiya, T. Someno, R.
Sawa, H. Naganawa, M. Ishizuka, T. Takeuchi, J. Antibiot. 1994, 47,
541 544.
[8] a) Structure determination: G. C. Hokanson, J. C. French, J. Org.
Chem. 1985, 50, 462 466; D. L. Boger, M. Hikota, B. M. Lewis, J. Org.
Chem. 1997, 62, 1748 1753; b) Synthesis: D. L. Boger, S. Ichikawa, W.
Zhong, J. Am. Chem. Soc. 2001, 123, 4161 4167; D. E. Chavez, E. N.
Jacobsen, Angew. Chem. 2001, 113, 3779 3782; Angew. Chem. Int. Ed.
2001, 40, 3667 3670.
[9] Structure determination: T. Kohama, T. Nakamura, T. Kinoshita, I.
Kaneko, A. Shiraishi, J. Antibiot. 1993, 46, 1512 1519; T. Shibata, S.
Kurihara, K. Yoda, H. Haruyama, Tetrahedron 1995, 51, 11999
12012.
of 20 into vinyl iodide (Z)-21 proved to be problematic. After
substantial experimentation, 21 was obtained by conversion of
the alkyne into the corresponding alkynyl iodide in the
presence of silver nitrate followed by reduction of the triple
bond with diimide.[20] All attempts to reduce the triple bond
with different reagents gave undesired side reactions, in
particular, the reduction of the a,b-unsaturated lactone and
ring opening. However, when diimide was generated in situ in
2-propanol, these side reactions were largely suppressed and
vinyl iodide (Z)-21 was obtained in 63% yield (Scheme 3).
This advanced intermediate was then subjected to Stille
coupling with Z,E-dienylstannane 5 with [PdCl2(CH3CN)2] as
catalyst and without additional phosphane.[12] Under these
conditions, sensitive (Z,Z,E)-22 was formed in a satisfactory
yield (62%). Dienylstannane 5 was synthesized from croto-
naldehyde: the latter was converted into the dibromoolefin
with CBr4 and PPh3 treated with nBuLi followed by Bu3SnCl
to give an enyne stannane, and subsequently subjected to
hydrozirconation (not shown). Finally, the phosphate was
unmasked. Upon treatment of phosphoric acid triester 22
with excess triethylamine, both fluorenylmethyl groups
[10] M. Braun, Methoden Org. Chem. (Houben-Weyl) 4th Ed. 1952
Vol. E21b, 1995, pp. 1612 1712.
,
[11] a) M. M. Midland, D. C. McDowell, R. L. Hatch, A. Tramontano, J.
Am. Chem. Soc. 1980, 102, 867 869; b) P. V. Ramachandran, A. V.
were cleaved in
a
b-elimination reaction, and the
1750
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4110-1750 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 10