168
M. O’Brien, D. Cooper
Letter
Synlett
completely removed the succinimide byproduct to afford
analytically pure products. We are currently incorporating
this system into several multistep flow syntheses. Addition-
ally, we are quantitatively investigating the dynamic perfor-
mance of the system under a range of chemical and physical
conditions and will report our findings in due course.
V. Synthesis 2011, 1157. (d) Polyzos, A.; O’Brien, M.; Petersen, T.
P.; Baxendale, I. R.; Ley, S. V. Angew. Chem. Int. Ed. 2011, 50,
1190.
(6) Lange, H.; Carter, C. F.; Hopkin, M. D.; Burke, A.; Goode, J. G.;
Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2, 765.
(7) (a) Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Lab Chip 2007, 7, 256.
(b) Atallah, R. H.; Ruzicka, J.; Christian, G. D. Anal. Chem. 1987,
59, 2909. (c) Castell, O. K.; Allender, C. J.; Barrow, D. A. Lab Chip
2009, 9, 388. (d) Kolehmainen, E.; Turunen, I. Chem. Eng. Process.
2007, 46, 834. (e) Hornung, C. H.; Mackley, M. R.; Baxendale, I.
R.; Ley, S. V. Org. Process Res. Dev. 2007, 11, 399.
(8) For a recent review on the use of cameras in organic synthesis,
see: Ley, S. V.; Ingham, R. J.; O’Brien, M.; Browne, D. L. Beilstein J.
Org. Chem. 2013, 9, 1051.
(9) O’Brien, M.; Koos, P.; Browne, D. L.; Ley, S. V. Org. Biomol. Chem.
2012, 10, 7031.
(10) Ingham, R. J.; Battilocchio, C.; Fitzpatrick, D. E.; Sliwinski, E.;
Hawkins, J. M.; Ley, S. V. Angew. Chem. Int. Ed. 2015, 54, 144.
(11) Sprecher, H.; Payán, M.; Weber, M.; Yilmaz, G.; Wille, G. J. Flow
Chem. 2012, 2, 20.
Acknowledgment
We would like to thank the Keele University Acorn Fund for funding.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(12) Jirkovsky, I. Can. J. Chem. 1974, 52, 55.
(13) Gerasyuto, A. I.; Hsung, R. P.; Sydorenko, N.; Slafer, B. J. Org.
Chem. 2005, 70, 4248.
(14) Bradski, G. Dr. Dobbs J. 2000, 25, 120.
(15) For an alternative approach that relates the size of a coloured
disk to the vertical distance from a camera, see: Wang, T. H.; Lu,
M. C.; Hsu, C. C.; Chen, C. C.; Tan, J. D. Measurement 2009, 42,
604.
(16) Representative Procedure for the Formation of the Enami-
nones (3i)
(1) (a) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42,
8849. (b) Wegner, J.; Ceylan, S.; Kirschning, A. Adv. Synth. Catal.
2012, 354, 17. (c) Brzozowski, M.; O’Brien, M.; Ley, S. V.;
Polyzos, A. Acc. Chem. Res. 2015, 48, 349. (d) Gutmann, B.;
Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
(e) Pathak, S.; Kundu, A.; Pramanik, A. RSC Adv. 2014, 4, 10180.
(f) Ley, S. V. Chem. Rec. 2012, 12, 378. (g) Webb, D.; Jamison, T.
F. Chem. Sci. 2010, 1, 675. (h) McQuade, D. T.; Seeberger, P. H.
J. Org. Chem. 2013, 78, 6384. (i) Wiles, C.; Watts, P. Chem.
Commun. 2011, 47, 6512. (j) Newman, S. G.; Jensen, K. F. Green
Chem. 2013, 15, 1456. (k) Yoshida, J. I. Chem. Rec. 2010, 10, 332.
(l) Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J.
Org. Chem. 2012, 8, 2025. (m) Ley, S. V.; Fitzpatrick, D. E.;
Ingham, R. J.; Myers, R. M. Angew. Chem. Int. Ed. 2015, 54, 3449.
(2) (a) Brandt, J. C.; Wirth, T. Beilstein J. Org. Chem. 2009, 5, 30.
(b) Muller, S. T. R.; Wirth, T. ChemSusChem 2015, 8, 245.
(c) O’Brien, M.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2010, 12,
1596. (d) Mastronardi, F.; Gutmann, B.; Kappe, C. O. Org. Lett.
2013, 15, 5590. (e) Maurya, R. A.; Park, C. P.; Lee, J. H.; Kim, D. P.
Angew. Chem. Int. Ed. 2011, 50, 5952. (f) Malet-Sanz, L.;
Madrzak, J.; Ley, S. V.; Baxendale, I. R. Org. Biomol. Chem. 2010,
8, 5324. (g) O’Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I. R.;
Ley, S. V. Chem. Sci. 2011, 2, 1250. (h) Poh, J.-S.; Tran, D. N.;
Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Angew. Chem. Int. Ed.
2015, 54, 7920. (i) Razzaq, T.; Kappe, C. O. Chem. Asian. J. 2010,
5, 1274.
(3) (a) Adolf, W. G. Mass Transfer Effects on Liquid-Phase Chemical
Reaction Rates, In Homogeneous Catalysis; Luberoff, B. A., Ed.;
American Chemical Society: Washington DC, 1974, ; Advances
in Chemistry Series; Vol. 70: Chap. 3,: 35. (b) Hobbs, C. C.;
Onore, M. J.; Van’t Hof, H. A.; Mesich, F. G.; Drew, E. H. Ind. Eng.
Chem. Prod. Res. Dev. 1972, 11, 220. (c) Markos, J.; Pisu, M.;
Morbidelli, M. Comput. Chem. Eng. 1998, 22, 627.
(4) (a) Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293. (b) Renken, A.;
Kiwi-Minsker, L. Adv. Catal. 2010, 53, 47. (c) Mansur, E. A.; Ye,
M.; Wang, Y.; Dai, Y. Chin. J. Chem. Eng. 2008, 16, 503.
(5) (a) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach,
A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor,
S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815. (b) Alza, E.;
Rodriguez-Escrich, C.; Sayalero, S.; Bastero, A.; Pericas, M. A.
Chem. Eur. J. 2009, 15, 10167. (c) O'Brien, M.; Denton, R.; Ley, S.
Cyclohexanedione (1.55 g, 13.8 mmol, 1 equiv) and 4-chloro-
benzylamine (1.8 mL, 14.8 mmol, 1.1 equiv) were added to a
flask under nitrogen. To this was added toluene (50 mL) and
EtOH (2.5 mL), and the mixture was stirred at reflux for 3 h.
Upon completion the solvent was removed under reduced pres-
sure, forming a yellow-brown solid, which was recrystallised
from toluene. The product was made up of yellow-brown crys-
tals; yield 71% (2.31 g); mp 166.8–168.4 °C (lit.: 170–172 °C).
1H NMR (300 MHz, CDCl3): δ = 7.32–7.26 (2 H, m), 7.18 (J = 8.54
Hz, 2 H, m), 5.34 (1 H, br s), 5.07 (1 H, s), 4.18 (J = 5.36 Hz, 2 H,
d), 2.38 (J = 6.15 Hz, 2 H, t), 2.27 (J = 6.53 Hz, 2 H, t), 1.99–1.91
(2 H, m, H-2). 13C NMR (100 MHz, CDCl3): δ = 197.4, 165.2,
135.3, 133.6, 128.9, 97.5, 46.3, 36.4, 29.5, 21.9. IR: ν = 3247
(NH), 3049, 1538 (C=O), 683 cm–1
.
Representative Procedure for the Continuous Flow Bromina-
tion (4i)
Using the apparatus shown in Figure 3, the system was primed
with CH2Cl2 and the aqueous extraction solvent for several
minutes until there were no air gaps in the flow path. 3-[(4-
chlorobenzyl)amino]cyclohex-2-enone (3i, 0.100 M in CH2Cl2)
was loaded in to the 3 mL injection loop. NBS (0.106 M in
CH2Cl2) was loaded into the 4.1 mL injection loop. The NBS loop
was injected into the system 20 s prior to the substrate loop.
Organic solution exiting the system was collected for 20 min.
The solvent was removed under reduced pressure to afford a
yellow-brown solid; yield 93% (87.5 mg): mp 121.5–122.3 °C.
1H NMR (400 MHz, CDCl3): δ = 7.32 (J = 7.43 Hz, 2 H, d), 7.18
(J = 7.65 Hz, 2 H, d), 6.12 (1 H, br s), 4.49 (J = 5.17 Hz, 2 H, d),
2.51 (J = 6.34 Hz, 2 H, t), 2.45 (J = 6.03 Hz, 2 H, t), 1.98–1.84 (2 H,
m). 13C NMR (100 MHz, CDCl3): δ = 187.8, 161.0, 136.0, 133.7,
129.2, 128.0, 96.6, 46.5, 36.6, 26.7, 20.7. IR: ν = 3260 (NH), 2988,
2955, 2939, 2901, 2884, 1584 (C=O), 800, 715 cm–1
.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 164–168