Organic Letters
Letter
entry 3, an example of nonaromatic isothiourea ring was shown
with 73% isolated yield. Entries 4−6 contain the same core 2-
amino thiazole ring moiety while altering the 4-position
substitution with an alkoxy group (entry 4, 68%), a phenyl
group (entry 5, 76%), or an alkyl group bearing additional
leaving groups that led to the formation of a fused ring (entry
6, 56%). Finally, entry 7 shows an example for the construction
of the benzotetramisole (BTM) moiety present in an
important class of organic catalysts with 71% isolated yields.
Overall, examples in Table 2 demonstrate that our new
multicomponent protocol can serve as a general synthetic
method for de novo construction of many important S-
containing heterocycles.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the Science and
Technology Commission of Shanghai Municipality
(17ZR1412000).
We also use this new protocol to synthesize the FDA
approved drug lesinurad (Scheme 4). The ester precursor to
REFERENCES
■
(1) (a) Hoy, S. M. Drugs 2016, 76, 509. (b) Burns, C. M.;
Wortmann, R. L. Lancet 2011, 377, 165. (c) Girardet, J.-I.; Koh, Y.-
H.; De La Rosa, M.; Gunic, E.; Hong, Z.; Lang, S.; Kim, H. W. Patent
WO 2006/026356, Mar 9, 2006.
Scheme 4. Comparison of Synthetic Routes to Lesinurad 1
(2) (a) Kitao, Y.; Kawakami, H.; Matsuo, A. Patent WO 2003/
048134, Jun 12, 2003. (b) Istyastono, E. P.; Nijmeijer, S.; Lim, H. D.;
van de Stolpe, A.; Roumen, L.; Kooistra, A. J.; Vischer, H. F.; de Esch,
I. J. P.; Leurs, R.; de Graaf, C. J. Med. Chem. 2011, 54, 8136.
(c) Matsuo, A.; Negoro, T.; Seo, T.; Kitao, Y.; Shindo, M.; Segawa,
H.; Miyamoto, K. Eur. J. Pharmacol. 2005, 517, 111. (d) Thoma, G.;
Streiff, M.; Kovarik, B. J.; Glickman, F.; Wagner, T.; Beerli, C.;
Zerwes, H.-G. J. Med. Chem. 2008, 51, 7915. (e) Bonn, P.; Brink, D.;
̈
Fagerhag, M. J.; Jurva, U.; Robb, G.; Schnecke, V.; Svensson
Hendriksson, A.; Waring, M.; Westerlund, J. C. Bioorg. Med. Chem.
Lett. 2012, 22, 7302.
(3) (a) Belmessieri, D. L.; Morrill, C.; Simal, C.; Slawin, A. M. Z.;
Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714. (b) West, T. H.;
Daniels, D. S. B.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc.
2014, 136, 4476. (c) Joannesse, C.; Johnston, C.; Concellon, P. C.;
Simal, C.; Philp, D.; Smith, A. D. Angew. Chem., Int. Ed. 2009, 48,
8914.
(4) (a) Quart, B. D.; Girardet, J.-I.; Gunic, E.; Yeh, L.-T. Patent WO
2009/070740, Jun 4, 2009. (b) Zamansky, I.; Galvin, G.; Girardet, J.-
I. Patent WO 2011/085009, July 14, 2011. (c) Gunic, E.; Galvin, G.
Patent WO 2014/008295, Jan 9, 2014.
(5) Kaplaushenko, A. H. O.; Panasenko, I.; Knish, E. H.; Shcherbina,
R. O. Farm. Zh. (Kiev, Ukraine) 2008, No. 2, 67.
(6) Wu, S.; Lei, X.; Fan, E.; Sun, Z. Org. Lett. 2018, 20, 522.
(7) Mampuys, P.; Zhu, Y.; Vlaar, T.; Ruijter, E.; Orru, R. V. A. B. U.;
Maes, W. Angew. Chem., Int. Ed. 2014, 53, 12849.
(8) (a) Nef, J. U.; Liebigs Ann. Chem. 1892, 270 (3), 267.
(b) Livinghouse, T. Tetrahedron 1999, 55 (33), 9947.
(9) (a) Mampuys, P.; Zhu, Y.; Sergeyev, S.; Ruijter, E.; Orru, R. V.
A.; Van Doorslaer, S.; Maes, B. U. W. Org. Lett. 2016, 18, 2808−2811.
(b) Bossio, R.; Marcaccini, S.; Pepino, R. Heterocycles 1986, 24 (7),
2003. (c) Bossio, R.; Marcaccini, S.; Pepino, R.; Torroba, T.
Heterocycles 1996, 43 (2), 471.
(10) (a) Siauciulis, M.; Sapmaz, S.; Pulis, A. P. D.; Procter, J.
Chemical Science 2018, 9 (3), 754. (b) Jarboe, S. G.; Terrazas, M. S.;
Beak, P. J. Org. Chem. 2008, 73 (24), 9627.
(11) (a) McCune, C. D.; Beio, M. L.; Sturdivant, J. M.; de la Salud-
Bea, R.; Darnell, B. M.; Berkowitz, D. B. J. Am. Chem. Soc. 2017, 139
(40), 14077. (b) Castell, J. V.; Tun-Kyi, A. Helv. Chim. Acta 1979, 62,
2507. (c) Samukov, V. V. Synth. Commun. 1998, 28 (17), 3213.
the drug lesinurad (compound 1 in Figure 1) can be
synthesized in one step from the corresponding isocyanide
using our three-component protocol in 52% isolated yield.
Note that in this protocol NBS was used as the activator and
was in excess so that direct bromination of the triazole at its 5-
position can occur after ring formation. In comparison, patent
literature revealed several synthetic procedures of lesinurad
with four or more steps from 2-amino-7-cyclopropylnaph-
thalene, and those procedures generally involve the formation
and handling of the toxic [1,2,4]triazole-3-thiol intermediates
(Scheme 4). The overall yield of our procedure is about 36%,
well above the 4−21% range based on patent literatures.
In summary, we developed a sulfenyl halide (and
succinimide) based multicomponent protocol that involves S-
electrophilic center and isocyanide through in situ activation of
disulfides. The procedure is suitable to a wide range of
nucleophiles for the formation of isothiourea or analogous
moieties. Inparticular, when our procedure is employed in the
synthesis of S-containing heterocycles, the advantages of mild
reaction conditions, reduced purification steps, and ease of
starting material accessibility will make our method a useful
addition to existing methodologies.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
General methods; experimental procedures and spectral
1
data; H and 13C NMR spectra; and references (PDF)
D
Org. Lett. XXXX, XXX, XXX−XXX