10.1002/anie.201808183
Angewandte Chemie International Edition
Moliterno, L. Buzzetti, H. B. Hepburn, A. Vega-Peñaloza, M. Silvi, P.
Melchiorre, ACS Catal. 2018, 8, 1062–1066; c) D. Mazzarella, G. E.
M. Crisenza, P. Melchiorre, J. Am. Chem. Soc. 2018, 140, 8439–8443.
For a review, see: d) M. Silvi, P. Melchiorre, Nature 2018, 554, 41–
49.
In summary, the photochemical activity of chiral iminium ions
has been exploited to activate unfunctionalized olefins and trigger an
enantioselective radical cascade process. We expect that this
photochemical organocatalytic activation mode could be useful for
designing other radical cascade processes and for stereoselectively
synthesizing more complex chiral scaffolds.
[10] Ł. Woźniak, G. Magagnano, P. Melchiorre, Angew. Chem. Int.
Ed. 2018, 57, 1068–1072; Angew. Chem. 2018, 130, 1080–1084.
[11] a) R. R. A. Kitson, A. Millemaggi, R. J. K. Taylor, Angew. Chem. Int.
Ed. 2009, 48, 9426–9451; Angew. Chem. 2009, 121, 9590–9615; b) J.
P. Wolfe, M. B. Hay, Tetrahedron 2007, 63, 261–290.
[12] For seminal works on the SET oxidation of alkenes, see: a) P. S.
Mariano, Tetrahedron 1983, 39, 3845–3879; b) J.-L. Stavinoha, P. S.
Mariano, J. Am. Chem. Soc. 1978, 100, 7114–7116.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: organocatalysis • cascade reactions • radicals •
photochemistry • asymmetric catalysis
[13] a) B. Giese, X. Beyrich-Graf, J. Burger, C. Kesselheim, M. Senn, T.
Shäfer, Angew. Chem. Int. Ed. Engl. 1993, 32, 1742–1743; Angew.
Chem. 1993, 105, 1850–1852; b) D. Crich, X. Huang, M. Newcomb,
J. Org. Chem. 2000, 65, 523–529; c) D. Crich, K. Ranganathan, S.
Neelamkavil, X. Huang, J. Am. Chem. Soc. 2003, 125, 7942–7947.
[14] a) J.-M. M. Grandjean, D. A. Nicewicz, Angew. Chem. Int. Ed. 2013,
52, 3967–3971; Angew. Chem. 2013, 125, 4059–4063; b) M. A.
Zeller, M. Riener, D. A. Nicewicz, Org. Lett. 2014, 16, 4810–4813; c)
N. J. Gesmundo, J.-M. M. Grandjean, D. A. Nicewicz, Org. Lett.
2015, 17, 1316–1319; d) C. L. Cavanaugh, D. A. Nicewicz, Org. Lett.
2015, 17, 6082–6085.
[1] a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. Int.
Ed. 2006, 45, 7134–7186; Angew. Chem. 2006, 118, 7292–7344; b) L.
F. Tietze, G. Brasche, K. M. Gericke, in Domino Reactions in Organic
Synthesis, Wiley-VCH, Weinheim, 2006; c) P.-F. Xu, W. Wang, in
Catalytic Cascade Reactions, Wiley-VCH, Weinheim, 2013.
[2] a) P. Renaud, M. P. Sibi, (Eds.), Radicals in Organic Synthesis,
Wiley-VCH: Weinheim, 2001; b) M. Yan, J. C. Lo, J. T. Edwards, P.
S. Baran, J. Am. Chem. Soc. 2016, 138, 12692−12714; c) C.
Chatgilialoglu, A. Studer (Eds.), Encyclopedia of Radicals in
Chemistry, Biology and Materials, John Wiley & Sons, 2012.
[3] a) M. P. Plesniak, H.-M. Huang, D. J. Procter Nat. Rev. Chem. 2017,
1, 0077; b) L. J. Sebren, J. J. Devery, C. R. J. Stephenson, ACS Catal.
2014, 4, 703–716; c) H. Miyabe, A. Kawashima, E. Yoshioka, S.
Kohtani, Chem. Eur. J. 2017, 23, 6225–6236.
[15] K. A. Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016 49, 1997–
2006; b) N. A. Romero, D. A. Nicewicz, J. Am. Chem. Soc. 2014, 136,
17024–17035; c) D. A. Nicewicz, D. S. Hamilton, Synlett 2014, 1191–
1196.
[16] a) D. S. Hamilton, D. A. Nicewicz, J. Am. Chem. Soc. 2012, 134,
18577–18580; b) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc.
2013, 135, 9588–9591.
[17] The improved reactivity in the two-phase solvent system can be
rationalized by the preferential solvation of catalyst B in the
fluorinated phase, which permits its slow release into the acetonitrile
phase. This mechanism minimizes the oxidative degradation of the
catalyst (Epox (A•+/A) = + 2.20 V, Epox (B•+/B) = + 2.40 V) by the
photoexcited iminium ion I* (estimated E*red = +2.40 V vs Ag/AgCl
in CH3CN), see Ref. [9a] for details.
[4] a) D. P. Curran, N. A. Porter, B. Giese, (Eds.) Stereochemistry of
Radical Reactions: Concepts, Guidelines, and Synthetic Applications,
VCH Verlag, Weinheim, 2008; b) M. P. Sibi, S. Manyem, J.
Zimmerman, Chem. Rev. 2003, 103, 3263–3296.
[5] For an excellent recent example: N. Kern, M. P. Plesniak, J. J. W.
McDouall, D. J. Procter, Nat. Chem. 2017, 9, 1198–1204.
[6] M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016 81,
6898–6926.
[7] a) J. Du, K. L. Skubi, D. M. Schultz, T. P. Yoon, Science 2014, 344,
392–396; b) A. G. Amador, E. M. Sherbrook, T. P. Yoon, J. Am.
Chem. Soc. 2016, 138, 4722–4725; c) X. Huang, J. Lin, T. Shen, K.
Harms, M. Marchini, P. Ceroni, E. Meggers, Angew. Chem. Int. Ed.
2018, 57, 5454–5458; Angew. Chem. 2018, 130, 5552–5556; d) P. D.
Morse, T. M. Nguyen, C. L. Cruz, D. A. Nicewicz, Tetrahedron 2018,
74, 3266–3272. For an example of catalytic asymmetric
[18] Crystallographic data for compound 3a has been deposited with the
Cambridge Crystallographic Data Centre, accession number CCDC
1854258.
[19] Attempts to perform a three-component radical cascade using 2,3-
dimethylbut-2-ene, which would afford products having a single
stereogenic center, met with failure. Given the reduction potential of
this olefin (Ep/2 = +1.74V (vs Ag/AgNO3 in CH3CN)), the lack of
reactivity is ascribable to steric hindrance hampering the acid addition
into the cation radical resulting from SET oxidation. For information
on the redox properties of the olefin, see: T. Shono, Y. Matsumura,
Bull. Chem. Soc. Japan 1975, 48, 2861−2864.
[20] a) Y. Shigemitsu, D. R. Arnold, J. Chem. Soc. Chem. Comm. 1975,
407–408; b) P. G. Gassman, K. J. Bottorhoff, Tetrahedron
Lett. 1987, 28, 5449–5452; c) A. J. Perkowski, D. A. Nicewicz, J. Am.
Chem. Soc. 2013, 135, 10334−10337.
multicomponent radical reaction that does not proceed via an
annulation manifold, see: e) J. Ma, X. Xie, E. Meggers, Chem. Eur. J.
2018, 24, 259–265
[8] For reviews on enantioselective photochemical reactions, see: a) R.
Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int.
Ed. 2015, 54, 3872–3890; Angew. Chem. 2015, 127, 3944–3963; b) C.
Brenninger, J. D. Jolliffe, T. Bach, Angew. Chem. Int. Ed. 2018, in
press, DOI: 10.1002/anie.201804006.
[9] a) M. Silvi, C. Verrier, Y. P. Rey, L. Buzzetti, P. Melchiorre, Nat.
Chem. 2017 9, 868–873; b) C. Verrier, N. Alandini, C. Pezzetta, M.
4
This article is protected by copyright. All rights reserved.