10.1002/anie.202109290
Angewandte Chemie International Edition
COMMUNICATION
OMe
iPr
Angew. Chem. 2016, 128, 9108; d) D. Qian, L. Wu, Z. Lin, J. Sun, Nat.
Commun. 2017, 8, 567; e) Y. Tang, J. Xu, J. Yang, L. Lin, X. Feng, X.
Liu, Chem. 2018, 4, 1658; f) W.-F. Zheng, W. Zhang, C. Huang, P. Wu,
H. Qian, L. Wang, Y.-L. Guo, S. Ma, Nat. Catal. 2019, 2, 997; g) M.
Chen, D. Qian, J. Sun, Org. Lett. 2019, 21, 8127; h) Y. Liao, X. Yin, X.
Wang, W. Yu, D. Fang, L. Hu, M. Wang, J. Liao, Angew. Chem. Int. Ed.
2020, 59, 1176; Angew. Chem. 2020, 132, 1192; i) X.-Y. Dong, T.-Y.
Zhan, S.-P. Jiang, X.-D. Liu, L. Ye, Z.-L. Li, Q.-S. Gu, X.-Y. Liu, Angew.
Chem. Int. Ed. 2021, 60, 2160; Angew. Chem. 2021, 133, 2188.
To the best of our knowledge, only two asymmetric reactions giving F-
substituted allenes have been reported: a) M. F. Kuehnel, T. Schlöder,
S. Riedel, B. Nieto-Ortega, F. J. Ramírez, J. T. López Navarrete, J.
Casado, D. Lentz, Angew. Chem. Int. Ed. 2012, 51, 2218; Angew.
Chem. 2012, 124, 2261; b) T. Li, C. Zhou, X. Yan, J. Wang, Angew.
Chem. Int. Ed. 2018, 57, 4048; Angew. Chem. 2018, 130, 4112.
For the synthesis of achiral and racemic F-substituted allenes: a) K.
Fuchibe, M. Abe, M. Sasaki, J. Ichikawa, J. Fluor. Chem. 2020, 232,
109452; b) C. Bakewell, A. J. P. White, M. R. Crimmin, Angew. Chem.
Int. Ed. 2018, 57, 6638; Angew. Chem. 2018, 130, 6748; c) X. Wang, Z.
Wu, J. Wang, Org. Lett. 2016, 18, 576; d) S. Sano, T. Matsumoto, T.
Yano, M. Toguchi, M. Nakao, Synlett 2015, 26, 2135; e) K. Oh, K.
Fuchibe, M. Yokota, J. Ichikawa, Synthesis 2012, 44, 857; f) K. Oh, K.
Fuchibe, J. Ichikawa, Synthesis 2011, 881; g) M. Yokota, K. Fuchibe, M.
Ueda, Y. Mayumi, J. Ichikawa, Org. Lett. 2009, 11, 3994; h) B. Xu, G. B.
Hammond, Angew. Chem. Int. Ed. 2008, 47, 689; Angew. Chem. 2008,
120, 701; i) M. Mae, J. A. Hong, B. Xu, G. B. Hammond, Org. Lett.
2006, 8, 479; j) Z. Wang, G. B. Hammond, J. Org. Chem. 2000, 65,
6547; k) G. Shi, Y. Xu, J. Fluor. Chem. 1989, 44, 161; l) A. L.
Castelhano, A. Krantz, J. Am. Chem. Soc. 1987, 109, 3491; m) W. R.
Dolbier, C. R. Burkholder, C. A. Piedrahita, J. Fluor. Chem. 1982, 20,
637.
R
a)
d)
Cl
•
•
•
F
F
F
3eg
3ei
3eh
7
10
OTs
b)
CH(COOMe)2
c)
or 3ee
O
•
F
•
N
8
F
[4]
[5]
9
I
O
a) 3eg (94% ee), NaCH(COOMe)2,
DME, 79% yield, 92% ee. b) 3ei
(92% ee), KN(CO)2C6H4, DMF,
71% yield, 92% ee. c) 3eh (99%
ee), NaI, acetone, 99% yield, 99%
ee. d) 3ee (96% ee), NaH, THF,
91% yield, 96% ee. e) 3al (88% ee),
NIS, MeCN, 82% yield, 88% ee.
OMe
OMe
e)
I
•
F
F
11
OMe
3al
OMe
Scheme 6. Derivatization of the fluoroallene products 3.
Taking advantages of the tosylate as a leaving group, those
fluoroallenes bearing a tosylate were readily converted into
malonate 7, phthalimide 8, iodide 9, and conjugated alkene 10
without serious loss of their enantiomeric purity (Scheme 6). The
iodonium-induced cyclization giving indene[23] was successfully
applied to the chiral arylallene 3al to give the chiral indene 11
with a quaternary carbon center with 88% ee.
In summary, we have developed a new type of catalytic
asymmetric reaction producing axially chiral fluorinated allenes
with high
% ee, where the enantioposition-selective -F
elimination from an alkenyl-Rh intermediate[24] is a key step in
[6]
[7]
a) Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2016, 138, 12340. See
also: b) Y. J. Jang, D. Rose, B. Mirabi, M. Lautens, Angew. Chem. Int.
Ed. 2018, 57, 16147; Angew. Chem. 2018, 130, 16379.
the catalytic cycle.
For reviews on Rh-catalyzed asymmetric arylation: a) M. M. Heravi, M.
Dehghani, V. Zadsirjan, Tetrahedron: Asymmetry 2016, 27, 513; b) P.
Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95; c) D. V. Partyka,
Chem. Rev. 2011, 111, 1529; d) G. Berthon, T. Hayashi, In Catalytic
Asymmetric Conjugate Reactions; A. Córdova, Ed. Wiley-VCH:
Germany, 2010; Chapter 1, p 1; e) H. J. Edwards, J. D. Hargrave, S. D.
Penrose, C. G. Frost, Chem. Soc. Rev. 2010, 39, 2093; f) J. B.
Johnson, T. Rovis, Angew. Chem. Int. Ed. 2008, 47, 840; Angew.
Chem. 2008, 120, 852; g) T. Hayashi, Pure Appl. Chem. 2004, 76, 465;
h) S. Darses, J.-P. Genet, Eur. J. Org. Chem. 2003, 2003, 4313.
For a seminal report on the -F elimination from alkyl-Rh intermediates:
a) T. Miura, Y. Ito, M. Murakami, Chem. Lett. 2008, 37, 1006. See also:
b) Z. Zhang, Q. Zhou, W. Yu, T. Li, G. Wu, Y. Zhang, J. Wang, Org. Lett.
2015, 17, 2474.
Acknowledgements
This work was supported by funding from Nanyang Techno-
logical University and the Singapore Ministry of Education (AcRF
MOE 2017-T2-1-064).
Keywords: axially chiral allene • asymmetric defluorination •
chiral diene ligand • rhodium catalyst
[8]
[9]
[1]
For relevant reviews: a) X. Huang, S. Ma, Acc. Chem. Res. 2019, 52,
1301; b) S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074; Angew.
Chem. 2012, 124, 3128; c) S. Ma, Chem. Rev. 2005, 105, 2829; d)
Modern Allene Chemistry, ed. N. Krause, A. S. K. Hashmi, Wiley-VCH:
Weinheim, Germany, 2004, vol. 1–2; e) A. Hoffmann-Röder, N. Krause,
Angew. Chem. Int. Ed. 2004, 43, 1196; Angew. Chem. 2004, 116, 1216;
f) D. J. Pasto, Tetrahedron, 1984, 40, 2805; g) D. R. Taylor. Chem. Rev.
1967, 67, 317.
For a relevant review: T. Fujita, K. Fuchibe, J. Ichikawa, Angew. Chem.
Int. Ed. 2019, 58, 390; Angew. Chem. 2019, 131, 396, and references
cited therein.
[10] For reviews dealing with -F elimination: a) J.-D. Hamel, J.-F. Paquin,
Chem. Commun. 2018, 54, 10224; b) Q. Shen, Y.-G. Huang, C. Liu, J.-
C. Xiao, Q.-Y. Chen, Y. Guo, J. Fluor. Chem. 2015, 179, 14; c) T. A.
Unzner, T. Magauer, Tetrahedron Lett. 2015, 56, 877.
[2]
[3]
For selected reviews on asymmetric synthesis of axially chiral allenes:
a) W.-D. Chu, Y. Zhang, J. Wang, Catal. Sci. Technol. 2017, 7, 4570; b)
S. Shirakawa, S. Liu, S. Kaneko, Chem. Asian J. 2016, 11, 330; c) J.
Ye, S. Ma, Org. Chem. Front. 2014, 1, 1210; d) R. K. Neff, D. E. Frantz,
ACS Catal. 2014, 4, 519; e) S. Yu, S. Ma, Chem. Commun. 2011, 47,
5384; f) M. Ogasawara, Tetrahedron: Asymmetry 2009, 20, 259; g) A.
Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2002, 41, 2933.
For recent examples of asymmetric synthesis of tetra-substituted
allenes: a) T. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton, K.
Maruoka, Nat. Chem. 2013, 5, 240; b) G. Wang, X. Liu, Y. Chen, J.
Yang, J. Li, L. Lin, X. Feng, ACS Catal. 2016, 6, 2482; c) A. Tap, A.
Blond, V. N. Wakchaure, B. List, Angew. Chem. Int. Ed. 2016, 55, 8962;
[11] a) S. Akiyama, K. Kubota, M. S. Mikus, P. H. S. Paioti, F. Romiti, Q. Liu,
Y. Zhou, A. H. Hoveyda, H. Ito, Angew. Chem. Int. Ed. 2019, 58, 11998;
Angew. Chem. 2019, 131, 12126; b) R. Kojima, S. Akiyama, H. Ito,
Angew. Chem. Int. Ed. 2018, 57, 7196; Angew. Chem. 2018, 130, 7314;
c) P. Gao, C. Yuan, Y. Zhao, Z. Shi, Chem 2018, 4, 2201; d) P. Gao, L.
Gao, L. Xi, Z. Zhang, S. Li, Z. Shi, Org. Chem. Front. 2020, 7, 2618.
[12] a) H. Li, D. Müller, L. Guénée, A. Alexakis, Org. Lett. 2012, 14, 5880; b)
H. Li, D. Grassi, L. Guénée, T. Bürgi, A. Alexakis, Chem. Eur. J. 2014,
20, 16694. For the racemic version, M. A. Schade, S. Yamada, P.
Knochel, Chem. Eur. J. 2011, 17, 4232. For the application to
asymmetric synthesis of allenylsilanes, d) Z.-L. Liu, C. Yang, Q.-Y. Xue,
This article is protected by copyright. All rights reserved.