ACS Catalysis
Page 16 of 17
1
(2) (a) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Pro-
(11) Del Zotto, A.; Baratta, W.; Ballico, M.; Herdtweck, E.; Rigo,
2
3
4
5
6
7
8
9
cess Res. Dev. 2016, 20, 140-177. (b) Pritchard, J.; Filonenko, G. A.;
van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev.
2015, 44, 3808-3833. (c) Chelucci, G.; Baldino, S.; Baratta, W. Acc.
Chem. Res. 2015, 48, 363-379. (d) Werkmeister, S.; Neumann, J.;
Junge, K.; Beller, M. Chem. Eur. J. 2015, 21, 12226-12250. (e)
Khusnutdinova, J. R.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54,
12236-12273. (f) Chelucci, G.; Baldino, S.; Baratta, W. Coord.
Chem. Rev. 2015, 300, 29-85. (g) Younus, H. A.; Su, W.; Ahmad,
N.; Chen, S.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 283-330.
(h) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev.
2014, 18, 289-302. (i) Gunanathan, C.; Milstein, D. Chem. Rev.
2014, 114, 12024-12087. (j) Balaraman, E.; Milstein, D. In Topics in
Organometallic Chemistry, Ruthenium in Catalysis; Dixneuf, P.
H.; Bruneau, C., Eds.; Springer-Verlag, Berlin, 2014, 48, 19-43. (k)
Younus, H. A.; Ahmad, N.; Su, W.; Verpoort, F. Coord. Chem.
P. Organometallics 2007, 26, 5636-5642.
(12) (a) Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J.
Am. Chem. Soc. 2014, 136, 3505−3521. (b) Dub, P. A.; Gordon, J. C.
Dalton Trans. 2016, 45, 6756–6781.
(13) Vicent, C.; Gusev, D. G. ACS Catal. 2016, 6, 3301-3309.
(14) (a) Wiberg, K. B.; Crocker, L. S.; Morgan, K. M. J. Am.
Chem. Soc. 1991, 113, 3447-3450. (b) So
= 38.4 (EtOH), 28.0
liquid
cal∙mol-1∙K-1 (acetaldehyde), and S°gas = 31.2 cal∙mol-1∙K-1 (H2); data
from NIST Chemistry WebBook (webbook.nist.gov/chemistry).
(15) (a) Among the d-metal complexes tested in the Tishchen-
ko reaction, the largest turnover numbers (up to 20,000) have
been observed with the bifunctional Shvo catalyst. However, the
mechanism proposed by Shvo invoked a three-step process in-
volving hydrogenation of the aldehyde substrate to the primary
alcohol, formation of an intermediate hemiacetal, followed by an
outer-sphere dehydrogenation of this intermediate to give the
ester.15b (b) Menashe, N.; Shvo, Y. Organometallics 1991, 10, 3885-
3891.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Rev. 2014, 276, 112-152.
(l) Trincado, M.; Banerjee, D.;
Grützmacher, H. Energy Environ. Sci. 2014, 7, 2464-2503. (m)
Clarke, M. L. SYNLETT 2014, 25, 1371-1380. (n) Gunanathan, C.
and Milstein, D. In Pincer and Pincer-Type Complexes: Applica-
tions in Organic Synthesis and Catalysis; Szabó, K. J.; Wendt, O.
F., Eds.; Wiley-VCH, Weinheim, Germany, 2014. (o) Gunana-
than, C.; Milstein, D. Science 2013, 341, 1229712. (p) Saudan, L. A.
In Sustainable Catalysis: Challenges and Practices for the Phar-
maceutical and Fine Chemical Industries; Dunn, P. J.; Hii, K. K.
(Mimi); Krische, M. J.; Williams, M. T., Eds.; John Wiley & Sons,
Hoboken, New Jersey, 2013. (q) Dub, P. A.; Ikariya, T. ACS Catal-
ysis 2012, 2, 1718-1741. (r) Clarke, M. L. Catal. Sci. Technol. 2012, 2,
2418-2423. (s) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011,
44, 588-602. (t) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev.
2010, 110, 681-703.
(16) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem. Int. Ed.
2013, 52, 2538-2542.
(17) Mascavage, L. M.; Sonnet, P. E.; Dalton, D. R. J. Org.
Chem. 2006, 71, 3435-3443.
(18) Albers, M. O.; Ashworth, T. V.; Oosthuizen, H. E.; Single-
ton, E. Inorg. Syntheses 1989, 26, 69.
(19) (a) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem.
2012, 51, 2772-2775. (b) Harris, A. D.; Robinson, S. D. Inorg. Chim.
Acta, 1980, 42, 25-31. (c) Sanchez-Delgado, R. A.; Lee, W.; Choi,
S. R.; Cho, Y.; Juu M.-J. Transition Met. Chem. 1991, 16, 241-244.
(20) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Na-
katsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.,
Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi,
J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross,
J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels,
A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox,
D. J. Gaussian, Inc., Wallingford CT, 2009.
(21) (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125,
194101-194118. (b) Chai, J.-D., Head-Gordon, M. Phys. Chem.
Chem. Phys. 2008, 10, 6615-6620.
(22) (a) This basis set is also known as def2-QZVP.22b (b)
Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297 -
3305. (c) Schaefer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994,
100, 5829-5835. (d) This basis set is also known as def-TZVP (sin-
gly polarized).22c
(23) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys.
Chem. B, 2009, 113, 6378-6396.
(24) (a) Martin, R. L.; Hay, P. J.; Pratt, L. R. J. Phys. Chem. A
1998, 102, 3565 - 3573. (b) Sieffert, N.; Bühl, M. Inorg. Chem.
2009, 48, 4622 - 4624.
(3) (a) Li, H.; Hall, M. B. ACS Catal. 2015, 5, 1895-1913.
(4) (a) Tao, J.; Wen, L.; Lv, X.; Qi, Y.; Yin, H. J. Mol. Struct.
2016, 1110, 24-31. (b) Li, H.; Hall, M. B. J. Am. Chem. Soc. 2014, 136,
383-395. (c) Yang, X. ACS Catal. 2013, 3, 2684-2688.
(5) (a) Chen, X.; Jing, Y.; Yang, X. Chem. Eur. J. 2016, 22, 1950-
1957. (b) Qu, S.; Dai, H.; Dang, Y.; Song, C.; Wang, Z.-X.; Guan,
H. ACS Catal. 2014, 4, 4377-4388. (c) Chen, T.; Li, H.; Qu, S.;
Zheng, B.; He, L.; Lai, Z.; Wang, Z.-X.; Huang, K.-W. Organome-
tallics 2014, 33, 4152-4155. (d) Hasanayn, F.; Baroudi, A.; Bengali,
A. A.; Goldman, A. S. Organometallics 2013, 32, 6969−6985. (e)
Hasanayn, F.; Baroudi, A. Organometallics 2013, 32, 2493-2496.
(f) O, W. W. N.; Morris, R. H. ACS Catal. 2013, 3, 32-40. (g) Li,
H.; Wen, M; Wang, Z.-X. Inorg. Chem. 2012, 51, 5716-5727. (h)
Hasanayn, F.; Morris, R. H. Inorg. Chem. 2012, 51, 10808-10818.
(6) (a) Hasanayn, F.; Harb, H. Inorg. Chem. 2014, 53, 8334-
8349. (b) Cho, D.; Ko, K. C.; Lee, J. Y. Organometallics 2013, 32,
4571-4576. (c) Sandhya, K. S.; Suresh, C. H. Organometallics 2013,
32, 2926-2933. (d) Makarov, I. S.; Fristrup, P.; Madsen, R. Chem.
Eur. J. 2012, 18, 15683-15692. (e) Li, H.; Wang, X.; Wen, M.; Wang,
Z.-X. Eur. J. Inorg. Chem. 2012, 5011-5020. (f) Mielby, J.; Riisager,
A.; Fristrup, P.; Kegnæs, S. Catalysis Today 2013, 203, 211-216. (g)
Li, H.; Wang, X.; Huang, F.; Lu, G.; Jiang, J.; Wang, Z.-X. Organ-
ometallics 2011, 30, 5233-5247. (h) Zeng, G.; Li, S. Inorg. Chem.
2011, 50, 10572-10580. (i) Nova, A.; Balcells, D.; Schley, N. D.;
Dobereiner, G. E.; Crabtree, R. H.; Eisenstein, O. Organometal-
lics 2010, 29, 6548-6558.
(7) Spasyuk, D.; Vicent, C.; Gusev D. G. J. Am. Chem. Soc. 2015,
137, 3743-3746.
(8) (a) Kuriyama, W.; Ino, Y.; Ogata, O.; Sayo, N.; Saitoa, T.
Adv. Synth. Catal. 2010, 352, 92-96. (b) Ino, Y.; Kuriyama, W.;
Ogata, O.; Matsumoto, T. Top. Catal. 2010, 53, 1019-1024.
(9) Spasyuk, D.; Gusev, D. G. Organometallics 2012, 31, 5239-
5242.
(10) Xu, W.; Langer, R. Dalton Trans. 2015, 44, 16785–16790.
ACS Paragon Plus Environment