2972
J. Boukouvalas, I.-I. Radu / Tetrahedron Letters 48 (2007) 2971–2973
b
c
d
OR
OTBDPS
OTBDPS
OTBDPS
O
HO
HO
O
O
O
O
5
6
7
3 R = H
a
4 R = TBDPS
e
HO
HO
g
h
NMe
I
I
OR
3
O
O
O
(+)-muscarine iodide (1a)
10
8 R = TBDPS
9 R = H
f
Scheme 2. Reagents and conditions: (a) TBDPSCl, Et3N, DMAP, CH2Cl2, 0 °C ! rt, 3 h (86%); (b) DIBAL, CH2Cl2, ꢀ78 °C, 2 h (95%); (c) MsCl,
Et3N, CH2Cl2, ꢀ20 ! 40 °C, 2.5 h (77%); (d) t-BuLi (2 equiv), THF, ꢀ78 ! 0 °C, 45 min, then TMEDA (2 equiv) or HMPA (1 equiv), 10 min, then
MeI (10 equiv), rt, 12 h (85%); (e) ThxBH2 (2 equiv), THF, 0 °C, 16 h, then aq 3 N NaOH/aq 30% H2O2, rt, 6 h (59%); (f) TBAF, THF, 0 °C ! rt,
2 h (93%); (g) Ph3P (1.5 equiv), I2 (1.4 equiv), imidazole (3 equiv), PhMe, 70 °C, 3 h (74%); (h) Me3N, EtOH, reflux, 3 h (92%).
2. For recent reviews on biological aspects of 1 and other
muscarinic agonists, see: (a) Eglen, R. M.; Choppin, A.;
Dillon, M. P.; Hegde, S. Curr. Opin. Chem. Biol. 1999, 3,
426–432; (b) Felder, C. C.; Bymaster, F. P.; Ward, J.;
DeLapp, N. J. Med. Chem. 2000, 43, 4333–4353; (c)
the propensity of dihydrofurans to undergo kinetic
deprotonation at the vinylic center a to the oxygen
atom.15 Thus, sequential treatment of 6 with t-BuLi
and a 10-fold excess of methyl iodide in the presence
of either TMEDA or HMPA afforded 7 in 85% yield.16
´
Bikadi, Z.; Simonyi, M. Curr. Med. Chem. 2003, 10, 2611–
2620; (d) Eglen, R. M. Prog. Med. Chem. 2005, 43, 105–
136.
3. Wu, E. S. C.; Griffith, R. C.; Loch, J. T., III; Kover, A.;
Murray, R. J.; Mullen, G. B.; Blosser, J. C.; Machulskis,
A. C.; McCreedy, S. A. J. Med. Chem. 1995, 38, 1558–
1570, and references cited therein.
4. See for example: (a) Masoud, G.-L.; Bourgue, C. W. J.
Neurosci. 2004, 24, 7718–7726; (b) Chen, S.-R.; Pan, H.-L.
Neuroscience 2004, 125, 141–148; (c) Wenzel, B.; Kunst,
M.; Guenther, C.; Ganter, G. K.; Lakes-Harlan, R.;
Elsner, N.; Heinrich, R. J. Comp. Neurol. 2005, 488, 129–
139; (d) Michel, F. J.; Fortin, G. D.; Martel, P.; Yeomans,
J.; Trudeau, L.-E. Neuropharmacology 2005, 48, 796–809;
(e) Chen, S.-R.; Wess, J.; Pan, H.-L. J. Pharmacol. Exp.
Ther. 2005, 313, 765–770; (f) Loreti, S.; Vilaro, M. T.;
Visentin, S.; Rees, H.; Levey, A. I.; Tata, A. M. J.
Neurosci. Res. 2006, 84, 97–105; (g) Nangle, M. R.; Keast,
J. R. Br. J. Pharmacol. 2006, 148, 423–433.
With the carbon skeleton in place, attention focused on
the hydration of the vinyl ether moiety by means of hyd-
roboration–oxidation.17 Of the various reagents tried,
including BH3ÆDMS, dicyclohexylborane, 9-BBN, disi-
amylborane, and thexylborane (ThxBH2), the last two
proved the most effective giving 86e as the only detect-
able isomer in yields of 55% and 59%, respectively. Sub-
sequent removal of the silyl protecting group provided
diol 9 which was cleanly transformed to the relay iodide
1018a on heating with iodine and triphenylphoshine in
the presence of imidazole.19 Finally, heating 10 in a
sealed tube with trimethylamine in ethanol6b delivered
(+)-muscarine iodide (1a) whose spectral and physical
properties18b were in excellent agreement with those
reported in the literature.6a,7e
5. Jin, Z. Nat. Prod. Rep. 2005, 22, 196–229, and previous
reviews in this series.
In summary, a highly selective asymmetric synthesis of
(+)-muscarine has been achieved in eight steps and
20% overall yield from (S)-c-hydroxymethyl-c-butyro-
lactone. This straightforward synthetic route builds the
3-oxygenated cis-2,5-disubstituted THF unit with com-
plete regio- and stereoselectivity and should be readily
adaptable to the preparation of other natural and
unnatural products of biomedical importance.20
6. For syntheses from 2000 see: (a) Kang, K. H.; Cha, M. Y.;
Pae, A. N.; Choi, K. I.; Cho, Y. S.; Koh, H. Y.; Chung, B.
Y. Tetrahedron Lett. 2000, 41, 8137–8140; (b) Popsavin,
V.; Beric, O.; Popsavin, M.; Radic, L.; Csanadi, J.; Cirin-
Novta, V. Tetrahedron 2000, 56, 5929–5940; (c) Knight, D.
W.; Staples, E. R. Tetrahedron Lett. 2002, 43, 6771–6773;
(d) Hartung, J.; Kunz, P.; Laug, S.; Schmidt, P. Synlett
2003, 51–54; (e) Knight, D. W.; Shaw, D. E.; Staples, E. R.
Eur. J. Org. Chem. 2004, 1973–1982; For recent syntheses
of analogues and other muscarine alkaloids see: (f) De
Amici, M.; Dallanoce, C.; Angelli, P.; Marucci, G.;
Cantalamessa, F.; De Marceli, C. Farmaco 2000, 55,
535–543; (g) Angle, S. R.; El-Said, N. A. J. Am. Chem.
Soc. 2002, 124, 3608–3616; (h) Hartung, J.; Kneuer, J.
Tetrahedron: Asymmetry 2003, 14, 3019–3031; (i) Fernan-
dez de la Pradilla, R.; Manzano, P.; Viso, A.; Fernandez,
J.; Gomez, A. Heterocycles 2006, 68, 1429–1442.
Acknowledgments
We thank the Natural Sciences and Engineering
Research Council of Canada (NSERC), Merck Frosst
Canada and Eisai Research Institute (Andover, MA,
USA) for financial support. We also thank FQRNT
´
(Quebec) for a postgraduate scholarship to I.-I.R.
7. For select syntheses before 2000 see: (a) Mulzer, J.;
Angermann, A.; Munch, W.; Schlichtho¨rl, G.; Hentzschel,
¨
References and notes
A. Liebigs Ann. Chem. 1987, 7–14; (b) Bandzouzi, A.;
Chapleur, Y. J. Chem. Soc., Perkin Trans. 1 1987, 661–
664; (c) Adams, J.; Poupart, M.-A.; Grenier, L. Tetrahe-
dron Lett. 1989, 30, 1753–1756; (d) Takano, S.; Iwabuchi,
Y.; Ogasawara, K. Chem. Commun. 1989, 1371–1372; (e)
´
1. Wang, P.-C.; Joullie, M. M. In The Alkaloids; Brossi, A.,
Ed.; Academic Press: New York, 1984; Vol. 23, pp 327–
380.