ORGANIC
LETTERS
2004
Vol. 6, No. 17
2925-2927
Approach to Geminally Alkylated
Azaphthalans via a Consecutive Double
Desilylation−Alkylation Reaction:
Application to a Synthesis of Cerpegin
Tarun K. Sarkar* and Sankar Basak
Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
Received June 3, 2004
ABSTRACT
A new approach to geminally alkylated azaphthalans and an application of this chemistry to the synthesis of the pyridone alkaloid, cerpegin,
is reported.
Although much attention has been paid to the introduction
of two organic groups at the 1,3-positions of phthalans,1-4
practically no report is available for the synthesis of
geminally alkylated phthalans and their congeners (azaph-
thalans) from their parent molecules. Like their 1,3-
counterparts that show promising pharmacological profiles,5
geminally alkylated phthalans and azaphthalans also display
significant biological activities, most of which have been
reported in the patent literature.6 Thus, introduction of two
organic groups on the same benzylic carbon in phthalans
and azaphthalans is an important task in organic synthesis.
Current methods for the direct synthesis of 1-substituted
as well as 1,3-disubstituted phthalans and azaphthalans
involve deprotonation of the parent compounds or their Cr-
(CO)3 complexes at the R-position followed by trapping of
the resulting species with a carbon electrophile.1-4 It should
be noted that the choice of base is critical for effective
deprotonation of these systems.4 To date, only t-BuLi and
n-BuLi-lithium 2-(dimethylamino)ethoxide (LiDMAE) are
found to be useful bases.1,4 With other basic reagents such
as n-BuLi-t-BuOK, Li-naphthalene, Li-4,4′-di-tert-butylbi-
phenyl, and n-BuLi-THF, ring cleavage was observed,4,7 and
with lithium amide bases such as LDA, the lithiation was
poorly selective.2,4 Herein, we report a route to geminally
alkylated azaphthalans based on a consecutive double desi-
lylation-alkylation reaction and an application of this
chemistry to the synthesis of the pyridone alkaloid, cerpegin.
(1) Coote, S. J.; Davies, S. G.; Middlemiss, D.; Naylor, A. J. Organomet.
Chem. 1989, 379, 81.
(2) Ewin, R. A.; Simpkins, N. S. Synlett 1996, 317.
(3) Zemolka, S.; Lex, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2002,
41, 2525.
(4) Fort, Y.; Gros, P.; Rodriguez, A. L. Tetrahedron Lett. 2002, 43, 4045.
(5) (a) A prominent example of a bioactive phthalan is the antidepressant
citalopram; see: Pollock, B. G. Expert Opin. Pharmacother. 2001, 2, 681.
(b) Lovey, R. G.; Elliott, A. J.; Kaminski, J. J.; Loebenberg, D.; Parmegiani,
R. M.; Rane, D. F.; Girijavallabhan, V. M.; Pike, R. E.; Guzik, H.;
Antonacci, B.; Tomaine, T. Y. J. Med. Chem. 1992, 35, 4221. (c) Ram, S.;
Saxena, A. K.; Jain, P. C.; Patnaik, G. K. Indian J. Chem. Sect. B 1984,
23, 1261. (d) Klohs, M. W.; Petracek, F. J. (Dart Industries. Inc.). U.S.
Patent 3471519, 1969; Chem. Abstr. 1969, 71, 124212.
(6) (a) Sun, E. T.; Anderson, M. B.; Anderes, K. L.; Christie, L. C.; Do,
Q. T.; Feng, J.; Goetzen, T.; Hong, Y.; Iatsimirskaia, E. A.; Li, H.; Luthin,
D. R.; Paderes, G. D.; Pathak, V. P.; Rajapakse, R. J.; Shackelford, S.;
Tompkins, E. V.; Truesdale, L. K.; Vazir, H. PCT Int. Appl. WO2002098363
2002, p 243. (b) Esanu, A. U.S. Patent US4602020, 1986. (c) Esanu, A.
U.S. Patent US4569939, 1986. (d) Esanu, A. U.S. Patent US4581362, 1986.
(e) Esanu, A. U.S. Patent US4585776, 1986. (f) Esanu, A. U.S. Patent
US4569938, 1986. (g) Sagara, T.; Itoh, I.; Nakashima, H.; Goto, Y.;
Shimizu, A.; Iwasawa, Y.; Okamoto, O. PCT Int. Appl. WO02088089, 2002,
p 187.
(7) (a) Baston, E.; Maggi, R.; Friedrich, K.; Schlosser, M. Eur. J. Org.
Chem. 2001, 3985. (b) Azzena, U.; Demartis, S.; Fiori, M. G.; Melloni, G.;
Pisano, L. Tetrahedron Lett. 1995, 36, 8123. (c) Foubelo, M.; Yus, M.
Trends Org. Chem. 1998, 7, 1.
10.1021/ol0489797 CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/16/2004