A R T I C L E S
Bassett et al.
Scheme 1. Structures of the Dinucleating Ligands, H2L1 and H2L2
studied are monometallic. There are few reports of macrocyclic
ligand preorganization for recognition of two lanthanide ions.8
The breakthrough in bimetallic lanthanide assembly came with
the formation of dinuclear lanthanide helicates based on
benzimidazole pyridyl ligands.9
We have been interested in employing self-assembly strategies
for lanthanide complexes,4 and have recently used â-diketonates
as sensitizers for lanthanide luminescence.10 Diketonate ligands
have the advantage of a negatively charged binding site that
leads to neutral, 3:1 ligand:lanthanide luminescent complexes.11
The complexes are stable in aqueous solutions and indeed
lanthanide diketonate complexes have found many applications
from chiral sensing12 to antibody labels in DELFIA immuno-
assays,13 and more recently in the development of new materials
based on sol-gel glasses,14 liquid crystals,15 near-IR LEDs16
or polymers.17 One approach to increase the luminescence output
signal is to introduce ligands with multiple binding sites. We
have therefore chosen to examine a bis-(â-diketonate) ligand
for the formation of dinuclear lanthanide complexes and report
our studies on such systems herein.
Ligand H2L1 bears two benzoyl â-diketonate sites joined by
a 1,3-phenylene spacer unit (Scheme 1). The 1,3-phenylene
spacer is ideal for formation of helicate metal complexes.18
Indeed, this ligand has been shown to form triple helical
complexes with Ti(III), V(III), Mn(III), and Fe(III)19 and a
modified ligand has been reported recently to lead to trinuclear
triple stranded helical Mn(II) complexes.20 Dinuclear lanthanide
diketonate complexes have received scant attention, with an
exception of a recent report during the course of this work.21
We report herein our studies to fully characterize H2L1,
determine the formation of dinuclear lanthanide complexes of
H2L1 and its properties as a sensitizer ligand for lanthanide ions.
The Eu(III), Sm(III) and Nd(III) complexes of H2L1 are reported.
To determine the helical nature of the complexes we extended
our approach to synthesize H2L2, a derivative of H2L1 with an
ethoxy substituent as a handle for NMR spectroscopic investiga-
tion in the characterization of the lanthanide complexes. A
quadruple-stranded dinuclear europium complex of H2L1 is also
reported herein, which displays strong luminescence signal with
a pattern distinct from that of the triple stranded europium
complex.
(1) Pan, L.; Adams, K. M.; Hernandez, H. E.; Wang, X. T.; Zheng, C.; Hattori,
Y.; Kaneko, K. J. Am. Chem. Soc. 2003, 125, 3062; Klonkowski, A. M.;
Lis, S.; Pietraszkiewicz, M.; Hnatejko, Z.; Czarnobaj, K.; Elbanowski, M.
Chem. Mater. 2003, 15, 656; Piggot, P. M. T.; Hall, L. A.; White, A. J. P.;
Williams, D. J. Inorg. Chem. 2003, 42, 8344; Thirumurugan, A.; Pati, S.
K.; Green, M. A.; Natarajan, S. J. Mater. Chem. 2003, 13, 2937; Thompson,
D. S.; Thompson, D. W.; Southward, R. E. Chem. Mater. 2002, 14, 30;
Shi, J. M.; Xu, W.; Liu, Q. Y.; Liu, F. L.; Huang, Z. L.; Lei, H.; Yu, W.
T.; Fang, Q. Chem. Commun. 2002, 756; Long, D. L.; Blake, A. J.;
Champness, N. R.; Wilson, C.; Schroder, M. Angew. Chem., Int. Ed. 2001,
40, 2444.
(2) Binnemans, K.; Goerller-Walrand, C. Chem. ReV. 2002, 102, 2302; Nozary,
H.; Piguet, C.; Rivera, J. P.; Tissot, P.; Morgantini, P. Y.; Weber, J.;
Bernardinelli, G.; Bunzli, J. C. G.; Deschenaux, R.; Donnio, B.; Guillon,
D. Chem. Mater. 2002, 14, 1075.
(3) Rudzinski, C. M.; Young, A. M.; Nocera, D. G. J. Am. Chem. Soc. 2002,
124, 1723; Parker, D. Coord. Chem. ReV. 2000, 205, 109.
(4) Glover, P. B.; Rodger, A.; Ashton, P. R.; Kercher, M.; Williams, R. M.;
De Cola, L.; Pikramenou, Z. J. Am. Chem. Soc. 2003, 125, 9918;
Charbonniere, L.; Ziessel, R.; Guardigli, M.; Roda, A.; Sabbatini, N.;
Cesario, M. J. Am. Chem. Soc. 2001, 123, 2436; Vazquez-Ibar, J. L.;
Weinglass, A. B.; Kaback, H. R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
3487; Bobba, G.; Kean, S. D.; Parker, D.; Beeby, A.; Baker, G. Perkin
Trans. 2 2001, 1738; Horrocks, W. D.; Bolender, J. P.; Smith, W. D.;
Supkowski, R. M. J. Am. Chem. Soc. 1997, 119, 5972.
(5) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A.
K. Chem. ReV. 2002, 102, 1977; Zucchi, G.; Ferrand, A. C.; Scopelliti, R.;
Bunzli, J. C. G. Inorg. Chem. 2002, 41, 2459; Gawryszewska, P.;
Jerzykiewicz, L.; Pietraszkiewicz, M.; Legendziewicz, J.; Riehl, J. P. Inorg.
Chem. 2000, 39, 5365; Balzani, V.; Scandola, F. In ComprehensiVe
Supramolecular Chemistry; Elselvier Science,: Oxford, UK, 1996; Vol.
10, pp 687; Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem. ReV.
1993, 123, 201.
(6) Marques, N.; Sella, A.; Takats, J. Chem. ReV. 2002, 102, 2137; Charbon-
niere, L. J.; Ziessel, R. HelV. Chim. Acta 2003, 86, 3402; Motson, G. R.;
Mamula, O.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D.; von Zelewsky,
A. J. Chem. Soc., Dalton Trans. 2001, 1389; Bretonnie`re, Y.; Wietzke, R.;
Lebrun, C.; Mazzanti, M.; Pe´caut, J. Inorg. Chem. 2000, 39, 3499;
Lessmann, J. J.; DeW. Horrocks, W. J. Inorg. Chem. 2000, 39, 3114.
(7) Magennis, S. W.; Parsons, S.; Pikramenou, Z. Chem. Eur. J. 2002, 8, 5761;
Lowe, M. P.; Caravan, P.; Rettig, S. J.; Orvig, C. Inorg. Chem. 1998, 37,
1637.
(8) Setyawati, I. A.; Liu, S.; Rettig, S. J.; Orvig, C. Inorg. Chem. 2000, 39,
496; Avecilla, F.; de Blas, A.; Bastida, R.; Fenton, D. E.; Mah´ıa, J.; Mac´ıas,
A.; Platas, C.; Rodr´ıguez, A.; Rodr´ıguez-Blas, T. Chem. Commun. 1999,
125; Ziessel, R.; Maestri, M.; Prodi, L.; Balzani, V.; Van Dorsselaer, A.
Inorg. Chem. 1993, 32, 1237.
Experimental Section
Materials and Methods. Starting materials were of reagent grade
and used without further purification, unless otherwise stated. Solvents
were of HPLC grade. LnCl3‚6H2O Ln ) Eu, Sm, Nd, and YCl3‚6H2O
were obtained from Aldrich (99.9%); acetophenone from BDH,
dimethyl isophthalate from Acros, NaH as 60% dispersion in mineral
oil from Aldrich (washed several times with hexane to remove oil).
Spectroscopic grade DMF (Aldrich) and deuterated solvents (Goss
Scientific) were used as received. Anhydrous THF and acetonitrile were
freshly distilled over sodium-benzopheneone and P2O5, respectively,
under dinitrogen. Ligand synthesis was performed under dinitrogen
using standard Schlenk and vacuum line techniques. Subsequent workup
of products was carried out without precautions to exclude air.
1H- and 13C{1H} NMR spectra were recorded on Bruker AC-300,
1
360, 500 MHz spectrometers. H and 13C{1H} shifts were referenced
to external SiMe4. Positive ion FAB and MALDI-TOF mass spectra
(9) Bunzli, J.-C. G.; Piguet, C. Chem. ReV. 2002, 102, 1897.
(10) Magennis, S. W.; Craig, J.; Gardner, A.; Fucassi, F.; Cragg, P. J.; Robertson,
N.; Parsons, S.; Pikramenou, Z. Polyhedron 2003, 745.
(17) Bender, J. L.; Corbin, P. S.; Fraser, C. L.; Metcalf, D. H.; Richardson, F.
S.; Thomas, E. L.; Urbas, A. M. J. Am. Chem. Soc. 2002, 124, 8526.
(18) Constable, E. C.; Hannon, M. J.; Tocher, D. A. J. Chem. Soc., Dalton Trans.
1993, 1883; Dietrich-Buchecker, C.; Rapenne, G.; Sauvage, J. P.; De Cian,
A.; Fischer, J. Chem. Eur. J. 1999, 5, 1432.
(19) Grillo, V. A.; Seddon, E. J.; Grant, C. M.; Arom´ı, G.; Bollinger, J. C.;
Folting, K.; Christou, G. Chem. Commun. 1997, 1561.
(20) AromIÅ, G.; Berzal, P. C.; Gamez, P.; Roubeau, O.; Kooijman, H.; Spek,
A. L.; Driessen, W. L.; Reedijk, J. Angew. Chem., Int. Ed. 2001, 40, 3444.
(21) Yuan, J.; Sueda, S.; Somazawa, R.; Matsumoto, K.; Matsumoto, K. Chem.
Lett. 2003, 32, 492.
(11) Weissman, S. I. J. Chem. Phys. 1942, 10, 214.
(12) Tsukube, H.; Shinoda, S. Chem. ReV. 2002, 102, 2389.
(13) Hemmila¨, I. A. Applications of Fluorescence in Immunoassays; J. Wiley
& Sons: New York, 1991; Vol. 117 Chemical Analysis Series.
(14) Binnemans, K.; Lenaerts, P.; Driesen, K.; Gorller-Walrand, C. J. Mater.
Chem. 2004, 14, 191.
(15) Van Deun, R.; Moors, D.; De Fre, B.; Binnemans, K. J. Mater. Chem.
2003, 13, 1520.
(16) Kang, T.-S.; Harrison, B. S.; Bouguettaya, M.; Foley, T. J.; Boncella, J.
M.; Schanze, K. S.; Reynolds, J. R. AdV. Funct. Mater. 2003, 13, 205.
9
9414 J. AM. CHEM. SOC. VOL. 126, NO. 30, 2004