3086
N. K. Garg et al.
LETTER
[3.2.2] Bicycle (13): Rf = 0.42 (hexanes–EtOAc, 5:1). 1H NMR (300
MHz, CDCl3): d = 6.98 (d, J = 2.7 Hz, 1 H), 6.15 (d, J = 2.7 Hz, 1
H), 6.02 (d, J = 9.3 Hz, 1 H), 5.98 (d, J = 8.8 Hz, 1 H), 5.69 (d,
J = 9.9 Hz, 1 H), 5.62 (d, J = 9.9 Hz, 1 H), 4.93 (s, 1 H), 3.81 (d,
J = 7.7 Hz, 1 H), 3.50 (t, J = 8.0 Hz, 2 H), 2.36 (dd, J = 14.3, 7.7 Hz,
1 H), 1.94 (dd, J = 14.3, 1.6 Hz, 1 H), 1.55 (s, 3 H), 0.91–0.83
(comp. m, 11 H), 0.02 (s, 3 H), 0.01 (s, 3 H), –0.07 (s, 9 H). 1H NMR
(300 MHz, C6D6): d = 6.55 (d, J = 2.7 Hz, 1 H), 6.23 (d, J = 8.8 Hz,
1 H), 5.96 (d, J = 3.3 Hz, 1 H), 5.94 (d, J = 9.2 Hz, 1 H), 5.59 (d,
J = 10.4 Hz, 1 H), 5.40 (d, J = 9.9 Hz, 1 H), 5.32 (s, 1 H), 3.82–3.75
(m, 1 H), 3.46 (t, J = 7.7 Hz, 2 H), 2.46 (dd, J = 13.7, 7.7 Hz, 1 H),
2.25 (dd, J = 13.7, 1.6 Hz, 1 H), 1.52 (s, 3 H), 0.92 (s, 9 H), 0.82 (t,
(7) (a) Stoltz, B. M. Chem. Lett. 2004, 33, 362. (b) Ferreira, E.
M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578.
(c) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem.
Int. Ed. 2004, 43, 6144.
(8) For catalytic intermolecular oxidative Heck arylations that
employ main group organometallic arenes with a range of
olefinic coupling partners and Pd(II) catalysis, see:
(a) Andappan, M. M. S.; Nilsson, P.; von Schenck, H.;
Larhed, M. J. Org. Chem. 2004, 69, 5212. (b) Farrington,
E. J.; Brown, J. M.; Barnard, C. F. J.; Rowsell, E. Angew.
Chem. Int. Ed. 2002, 41, 169; and references cited therein.
(9) For related examples of Pd-mediated carbocyclizations in
natural product synthesis, see: (a) Baran, P. S.; Corey, E. J.
J. Am. Chem. Soc. 2002, 124, 7904. (b) Williams, R. M.;
Cao, J.; Tsujishima, H.; Cox, R. J. J. Am. Chem. Soc. 2003,
125, 12172.
(10) For reviews and examples regarding the use of (–)-quinic
acid in natural product synthesis, see: (a)Barco, A.; Benetti,
S.; De Risi, C.; Marchetti, P.; Pollini, G. P.; Zanirato, V.
Tetrahedron: Asymmetry 1997, 8, 3515. (b) Huang, P.-Q.
Youji Huaxue 1999, 19, 364. (c) Hanessian, S.; Pan, J.;
Carnell, A.; Bouchard, H.; Lesage, L. J. Org. Chem. 1997,
62, 465. (d) Hanessian, S. In Total Synthesis of Natural
Products: The ‘Chiron’ Approach; Baldwin, E. J., Ed.;
Pergamon Press: Oxford, 1983, 206–208.
J = 8.0 Hz, 2 H), –0.03 (s, 3 H), –0.08 (s, 3 H), –0.09 (s, 9 H). 13
C
NMR (75 MHz, CDCl3): d = 188.7, 144.1, 139.4, 134.5, 129.1,
121.8, 107.7, 78.2, 77.8, 73.3, 66.4, 45.7, 45.0, 26.0 (3 C), 22.2,
18.2, 18.0, –1.25 (3 C), –4.1, –4.6. IR (film): 3432, 2955, 2858,
1645, 1250, 1081 cm–1. HRMS (EI): m/z [M + H]+ calcd for
19
C24H42NO4Si2: 464.2652; found: 464.2665. [a]D +19.22° (c 1.0,
C6H6).
Acknowledgment
The authors thank the NIH-NIGMS (R01 GM65961-01), the ND-
SEG (predoctoral fellowship to N.K.G.), Eli Lilly (predoctoral fel-
lowship to D.D.C.), AstraZeneca, Boehringer Ingelheim, Johnson
& Johnson, Pfizer, Merck, Amgen, Research Corporation, Roche,
and GlaxoSmithKline for generous funding.
(11) (a) Edwards, M. P.; Ley, S. V.; Lister, S. G.; Palmer, B. D.
J. Chem. Soc., Chem. Commun. 1983, 630. (b) Muchowski,
J. M.; Solas, D. R. J. Org. Chem. 1984, 49, 203.
(c) Edwards, M. P.; Ley, S. V.; Lister, S. G.; Palmer, B. D.;
Williams, D. J. J. Org. Chem. 1984, 49, 3503. (d) Edwards,
M. P.; Doherty, A. M.; Ley, S. V.; Organ, H. M. Tetrahedron
1986, 42, 3723.
References and Notes
(1) (a) Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998.
(b) Geissler, H. In Transition Metals for Organic Synthesis;
Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998,
Chap. 2.10, 158. (c) Tsuji, J. In Transition Metal Reagents
and Catalysts; Wiley: Chichester, UK, 2000, Chap. 3, 27.
(2) For seminal reports, see: (a) Heck, R. F.; Nolley, J. P. Jr. J.
Org. Chem. 1972, 37, 2320. (b) Dieck, H. A.; Heck, R. F. J.
Org. Chem. 1975, 40, 1083. (c) Tao, W.; Silverberg, L. J.;
Rheingold, A. L.; Heck, R. F. Organometallics 1989, 8,
2550.
(3) For recent reviews of the Heck reaction, see: (a) Dounay,
A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945.
(b) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000,
100, 3009. (c) Amatore, C.; Jutand, A. J. Organomet. Chem.
1999, 576, 254. (d) Braese, S.; de Meijere, A. In Handbook
of Organopalladium Chemistry for Organic Synthesis, Vol.
1; Negishi, E.-I., Ed.; Wiley: Hoboken, New Jersey, 2002,
1223–1254. (e) Link, J. T. Org. React. 2002, 60, 157.
(4) The Ni-catalyzed Negishi couplings of secondary halides
have also been used to create stereogenic centers. For a
pertinent review, see: Netherton, M. R.; Fu, G. C. Adv.
Synth. Catal. 2004, 346, 1525.
(5) (a) Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc.
2004, 126, 9552. (b) Garg, N. K.; Caspi, D. D.; Stoltz, B. M.
J. Am. Chem. Soc. 2005, 127, 5970.
(6) In the case of the oxidative Heck route, an alternative
Wacker-type mechanism involving nucleophilic attack of a
Pd-activated olefin by the pyrrole species cannot be ruled
out. It should be noted that in two extensively studied
systems for oxidative Heck cyclization, both were shown to
involve initial palladation of the aromatic system followed
by olefin insertion and b-hydrogen elimination, see ref. 7.
(12) Bailey, D. M.; Johnson, R. E. J. Med. Chem. 1973, 16, 1300.
(13) (a) Tada, H.; Tozyo, T. Chem. Lett. 1988, 5, 803. (b) For a
discussion regarding the instability of bromopyrroles, see:
Audebert, P.; Bidan, G. Synth. Met. 1986, 15, 9.
(14) Jeffery, T.; David, M. Tetrahedron Lett. 1998, 39, 5751; see
also references cited therein.
(15) (a) Herrmann, W. A.; Brossmer, C.; Öfele, K.; Reisinger, C.-
P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1844. (b) Herrmann, W. A.; Brossmer,
C.; Reisinger, C.-P.; Reirmeier, T. H.; Öfele, K.; Beller, M.
Chem. Eur. J. 1997, 3, 1357. (c) Herrmann, W. A.;
Brossmer, C.; Öfele, K.; Beller, M.; Fischer, H. J. Mol.
Catal. A: Chem. 1995, 103, 133.
(16) (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
6989. (b) Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10.
(17) (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed.
1998, 37, 388. (b) Fuji, K. Chem. Rev. 1993, 93, 2037.
(c) Martin, S. F. Tetrahedron 1980, 36, 419. (d) Douglas,
C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5363.
(18) DMSO has commonly been employed in oxidative Pd(II)
chemistry. See: (a) Larock, R. C.; Hightower, T. R. J. Org.
Chem. 1993, 58, 5298. (b) Van Benthem, R. A. T. M.;
Hiemstra, H.; Michels, J. J.; Speckamp, W. N. J. Chem. Soc.,
Chem. Commun. 1994, 357. (c) Rönn, M.; Bäckvall, J.-E.;
Andersson, P. G. Tetrahedron Lett. 1995, 36, 7749.
(d) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126,
1346. (e) Stahl, S. S. Angew. Chem. Int. Ed. 2004, 43, 3400,
see also references cited therein.
(19) Recently, related oxidative cyclizations of pyrrole substrates
have been reported. See: (a) Beccalli, E. M.; Broggini, G.;
Martinelli, M.; Paladino, G. Tetrahedron 2005, 61, 1077.
(b) Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J.
Am. Chem. Soc. 2006, 128, 2528.
Synlett 2006, No. 18, 3081–3087 © Thieme Stuttgart · New York