ChemComm
Communication
ˇ
759–773; ( f ) J. Kopecek and J. Yang, Angew. Chem., Int. Ed., 2012, 51,
7396–7417; (g) C. Tomasini and N. Castellucci, Chem. Soc. Rev.,
2013, 42, 156–172; (h) A. Dasgupta, J. H. Mondal and D. Das, RSC
Adv., 2013, 3, 9117–9149.
3 For selected recent examples for peptide-based LMW hydrogelators see:
(a) V. J. Nebot, J. Armengol, J. Smets, S. F. Prieto, B. Escuder and
J. F. Miravet, Chem.–Eur. J., 2012, 18, 4063–4072; (b) S. Marchesan,
C. D. Easton, F. Kushkaki, L. Waddington and P. G. Hartley, Chem.
Commun., 2012, 48, 2195–2197; (c) R. Orbach, I. Mironi-Harpaz, L. Adler-
Abramovich, E. Mossou, E. P. Mitchell, V. T. Forsyth, E. Gazit and
D. Seliktar, Langmuir, 2012, 28, 2015–2022; (d) K. A. Houton,
K. L. Morris, L. Chen, M. Schmidtmann, J. T. A. Jones, L. C. Serpell,
G. O. Lloyd and D. J. Adams, Langmuir, 2012, 28, 9797–9806;
(e) S. Grigoriou, E. K. Johnson, L. Chen, D. J. Adams, T. D. James
and P. J. Cameron, Soft Matter, 2012, 8, 6788–6791; ( f ) M. Hughes, P.
W. J. M. Frederix, J. Raeburn, L. S. Birchall, J. Sadownik, F. C. Coomer,
I. H. Lin, E. J. Cussen, N. T. Hunt, T. Tuttle, S. J. Webb, D. J. Adams
and R. V. Ulijn, Soft Matter, 2012, 8, 5595–5602; (g) G. Pont, L. Chen,
D. G. Spiller and D. J. Adams, Soft Matter, 2012, 8, 7797–7802;
(h) X. Zhang, X. Chu, L. Wang, H. Wang, G. Liang, J. Zhang, J. Long
and Z. Yang, Angew. Chem., Int. Ed., 2012, 51, 4388–4392; (i) C. Ou,
J. Zhang, X. Zhang, Z. Yang and M. Chen, Chem. Commun., 2013, 49,
1853–1855; ( j) J. Nanda, A. Biswas and A. Banerjee, Soft Matter, 2013,
9, 4198–4208; (k) R. Wieduwild, M. Tsurkan, K. Chwalek,
P. Murawala, M. Nowak, U. Freudenberg, C. Neinhuis, C. Werner
and Y. Zhang, J. Am. Chem. Soc., 2013, 135, 2919–2922.
4 For examples of low molecular weight peptide self-assemblies/hydro-
gels see: (a) M. Reches and E. Gazit, Science, 2003, 300, 625–627;
(b) N. S. de Groot, T. Parella, F. X. Aviles, J. Vendrell and S. Ventura,
Biophys. J., 2007, 92, 1732–1741; (c) M. J. Krysmann, V. Castelletto,
A. Kelarakis, I. W. Hamley, R. A. Hule and D. J. Pochan, Biochemistry,
2008, 47, 4597–4605; (d) J. Naskar, G. Palui and A. Banerjee, J. Phys.
Chem. B, 2009, 113, 11787–11792; (e) A. Saiani, A. Mohammed,
H. Frielinghaus, R. Collins, N. Hodson, C. M. Kielty, M. J. Sherratt
and A. F. Miller, Soft Matter, 2009, 5, 193–202; ( f ) S. Marchesan,
C. D. Easton, F. Kushkaki, L. Waddington and P. G. Hartley, Chem.
Commun., 2012, 48, 2195–2197.
Fig. 5 Drug release experiment with BSA (dotted lines) and tetracycline
(continuous lines) in different blend hydrogels of DKPs 4 and 6. (DKP 4 : DKP 6).
at pH 7 (ESI,† Fig. S8A). However, the fastest regeneration is
observed at pH 10 (ESI,† Fig. S8B). A SEM image of a freeze dried
sample at pH 7 showed a so far unseen morphological shape
with a highly ordered lamellar structure (Fig. 4A). Xerogel
morphologies for other pH values are shown in the ESI† (Fig. S9).
Finally, we were interested in an application of our newly found
hydrogel blends in a drug release experiment. We particular asked
ourselves whether we can modulate the drug releasing properties of
the hydrogel by simply varying the DKP ratio. Thus 1 : 1, 1 : 2 and 2 : 1
mixtures of 4 and 6 were investigated in the release of (1) tetracycline
(TC) as a lipophilic small molecule and (2) bovine serum albumin
(BSA) as a highly charged polypeptide as model substrates (Fig. 5).13
For both substrates a significant difference in drug release was
observed. While nearly all BSA was released after 24 h for a 2 : 1
mixture of 4 and 6, only 55% was released with the 1 : 2 mixture. The
hydrogel containing a 1 : 1 mixture of 4 and 6 lies in-between (75%).
For TC the fastest release was observed for the 1 : 1 and the 2 : 1
mixtures (82% and 80%) while the 1:2 mixture showed a signifi-
cantly delayed release (62%).
In summary, we herein present the remarkable hydrogelation
properties of phenylalanine-containing cyclic dipeptides (diketo-
piperazines – DKPs) which only contain proteinogenic amino acids
as building blocks. To the best of our knowledge these structures are
the smallest peptide-based hydrogelators that have been described
so far. Despite their simplicity and the low molecular weight of their
monomeric building blocks, the so formed hydrogels are remarkably
stable and self-healing. We could further demonstrate that a blend
of two well-chosen DKPs shows novel pH-dependent mechanical
properties and can be used as soft materials for delayed drug release.
We gratefully acknowledge the Baden-Wu¨rttemberg Stiftung
(Juniorprofessorenprogramm) for financial support.
5 S. Zhang, Acc. Chem. Res., 2012, 45, 2142–2150.
6 A. D. Borthwick, Chem. Rev., 2012, 112, 3641–3716.
7 For DKP-derived organo- and hydrogelators see: (a) Z. Xie, A. Zhang,
L. Ye, X. Wang and Z.-G. Feng, J. Mater. Chem., 2009, 19, 6100–6102;
(b) Z. Xie, A. Zhang, L. Ye and Z.-G. Feng, Soft Matter, 2009, 5,
1474–1482; (c) S. Manchineella and T. Govindaraju, RSC Adv., 2012,
2, 5539–5542; (d) K. Hanabusa, Y. Matsumoto, T. Miki, T. Koyama
and H. Shirai, J. Chem. Soc., Chem. Commun., 1994, 1401–1402.
8 An exceptional low molecular weight squalen-based hydrogelator
was recently described by Ohsedo and co-workers: Y. Ohsedo,
M. Miyamoto, M. Oono, K. Shikii and A. Tanaka, RSC Adv., 2013,
3, 3844–3847.
9 The so far lowest molecular weight hydrogleators with amide bonds
were described by Xu and Das: (a) J. Shi, Y. Gao, Z. Yang and B. Xu,
Beilstein J. Org. Chem., 2011, 7, 167–172; (b) D. K. Kumar, D. A. Jose,
P. Dastidar and A. Das, Langmuir, 2004, 20, 10413–10418.
10 (a) B. Adhikari, J. Nanda and A. Banerjee, Soft Matter, 2011, 7, 8913–8922;
(b) J. Nanda and A. Banerjee, Soft Matter, 2012, 8, 3380–3386;
(c) A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins,
M. L. Turner, A. Saiani and R. V. Ulijn, Adv. Mater., 2008, 20, 37–41.
11 For a review see: (a) A. R. Hirst and D. K. Smith, Chem.–Eur. J., 2005,
11, 5496–5508; (b) L. E. Buerkle and S. J. Rowan, Chem. Soc. Rev.,
2012, 41, 6089–6102.
12 (a) A. R. Hirst, D. K. Smith, M. C. Feiters and H. P. M. Geurts, Langmuir,
2004, 20, 7070–7077; (b) A. R. Hirst, D. K. Smith, M. C. Feiters and
H. P. M. Geurts, Chem.–Eur. J., 2004, 10, 5901–5910; (c) Q. Wang, Z. Yang,
L. Wang, M. Ma and B. Xu, Chem. Commun., 2007, 1032–1034;
(d) Q. Wang, Z. Yang, X. Zhang, X. Xiao, C. K. Chang and B. Xu, Angew.
Chem., Int. Ed., 2007, 46, 4285–4289; (e) Q. Wang, Z. Yang, M. Ma,
C. K. Chang and B. Xu, Chem.–Eur. J., 2008, 14, 5073–5078; ( f ) X. Zhu,
P. Duan, L. Zhang and M. Liu, Chem.–Eur. J., 2011, 17, 3429–3437;
(g) A. R. Hirst, J. E. Miravet, B. Escuder, L. Noirez, V. Castelletto,
I. W. Hamley and D. K. Smith, Chem.–Eur. J., 2009, 15, 372–379;
(h) J. G. Hardy, A. R. Hirst and D. K. Smith, Soft Matter, 2012, 8, 3399–3406.
Notes and references
1 For reviews see: (a) A. R. Hirst, B. Escuder, J. F. Miravet and
D. K. Smith, Angew. Chem., Int. Ed., 2008, 47, 8002–8018;
(b) C. Yan and D. J. Pochan, Chem. Soc. Rev., 2010, 39, 3528–3540;
(c) D. M. Ryan and B. L. Nilsson, Polym. Chem., 2012, 3, 18–33;
(d) H. Wang and Z. Yang, Nanoscale, 2012, 4, 5259–5267; (e) Y. Li,
J. Rodrigues and H. Tomas, Chem. Soc. Rev., 2012, 41, 2193–2221.
2 For reviews see: (a) I. W. Hamley, Angew. Chem., Int. Ed., 2007, 46,
8128–8147; (b) J. Raeburn, A. Zamith Cardoso and D. J. Adams,
Chem. Soc. Rev., 2013, 42, 5143–5156; (c) E. K. Johnson, D. J. Adams
and P. J. Cameron, J. Mater. Chem., 2011, 21, 2024–2027; (d) J. W.
Steed, Chem. Commun., 2011, 47, 1379–1383; (e) A. M. Jonker, 13 T. Vermonden, R. Censi and W. E. Hennink, Chem. Rev., 2012, 112,
¨
D. W. P. M. Lowik and J. C. M. van Hest, Chem. Mater., 2011, 24,
2853–2888.
c
This journal is The Royal Society of Chemistry 2013
7820 Chem. Commun., 2013, 49, 7818--7820