COMMUNICATIONS
MS (ESI+): m/z=275.09158, calculated for C15H14O5 [M+
H]+: 275.09140.
29, 819–822; c) Y. Ishii, Y. Narimatsu, Y. Iwasaki, N.
Arai, K. Kino, K. Kirimura, Biochem. Biophys. Res.
Commun. 2004, 324, 611–620; d) T. Matsui, T. Yoshida,
T. Yoshimura, T. Nagasawa, Appl. Microbiol. Biotech-
nol. 2006, 73, 95–102; e) S. Ienaga, S. Kosaka, Y.
Honda, Y. Ishii, K. Kirimura, Bull. Chem. Soc. Jpn.
2013, 86, 628–634; f) C. Wuensch, J. Gross, G. Steinkell-
ner, A. Lyskowski, K. Gruber, S. M. Glueck, K. Faber,
RSC Adv. 2014, 4, 9673–9679; g) M. Sato, N. Sakurai,
H. Suzuki, D. Shibata, K. Kino, J. Mol. Catal. B 2015,
122, 348–352.
9b: 1H NMR (300 MHz, DMSO-d6): d=7.37 (d, J=
8.5 Hz, 1H), 6.87 (d, J=8.9 Hz, 1H), 6.80 (t, J=8.2 Hz,
1H), 6.41 (s, 2H), 6.33 (d, J=2.4 Hz, 1H), 6.27–6.23 (m,
1H). 13C NMR (75 MHz, DMSO-d6): d=172.9, 161.2, 160.8,
158.8, 145.9, 129.7, 126.4, 125.5, 115.0, 107.4, 104.0, 103.8,
103.7, 102.6.
9c: 1H NMR (300 MHz, DMSO-d6): d=7.58 (d, J=
8.7 Hz, 1H), 7.35 (d, J=16.5 Hz, 1H), 6.95 (d, J=16.5 Hz,
1H), 6.51 (s, 2H), 6.30 (t, J=9.2 Hz, 1H); 13C NMR
(75 MHz, DMSO-d6): d=174.5, 172.5, 162.5, 161.2, 160.8,
145.3, 132.0, 126.9, 124.1, 114.6, 107.3, 104.7, 103.0, 100.3;
HR-MS (ESI+): m/z=333.060595, calculated for C16H14O8
[M+H]+: 333.060494.
[9] a) T. Matsui, T. Yoshida, T. Hayashi, T. Nagasawa,
Arch. Microbiol. 2006, 186, 21–29; b) T. Yoshida, Y.
Inami, T. Matsui, T. Nagasawa, Biotechnol. Lett. 2010,
32, 701–705.
[10] C. Wuensch, T. Pavkov-Keller, G. Steinkellner, J.
Gross, M. Fuchs, A. Hromic, A. Lyskowski, K. Fauland,
K. Gruber, S. M. Glueck, K. Faber, Adv. Synth. Catal.
2015, 357, 1909–1918.
[11] a) M. Wieser, T. Yoshida, T. Nagasawa, J. Mol. Catal. B
2001, 11, 179–184, b) T. Yoshida, T. Nagasawa, J.
Biosci. Bioeng. 2000, 89, 111–118; c) T. Yoshida, K.
Fujita, T. Nagasawa, Biosci. Biotechnol. Biochem. 2002,
66, 2388–2394.
[12] a) R. Brackmann, G. Fuchs, Eur. J. Biochem. 1993, 213,
563–571; b) M. Boll, G. Fuchs, Biol. Chem. 2005, 386,
989–997; c) J. Gobson, C. S. Harwood, Annu. Rev. Mi-
crobiol. 2002, 56, 345-369; d) L. Ackermann, Angew.
Chem. 2011, 123, 3926–3928; Angew. Chem. Int. Ed.
2011, 50, 3842–3844.
Acknowledgements
Funding by the Austrian Science Fund (FWF, project I 1637-
N19) is gratefully acknowledged. This work has been sup-
ported by the Austrian BMWFJ, BMVIT, SFG, Standortagen-
tur Tirol and ZIT through the Austrian FFG-COMET-Fund-
ing Program. The authors would like to thank LꢀOrꢁal for
a financial contribution. Klaus Zangger and his team and
Martin Mittelbach and co-workers (Graz) are cordially
thanked for their support in NMR and HR-MS analysis, re-
ˇ
spectively. Vladimir Kren (Prague) is thanked for providing
substrates.
[13] a) S. Quideau, D. Deffieux, C. Douat-Casassus, L.
Pouysegu, Angew. Chem. 2011, 123, 610–646; Angew.
Chem. Int. Ed. 2011, 50, 586–621; b) Y. Nakamura, S.
Watanabe, N. Miyake, H. Kohno, T. Osawa, J. Agric.
Food Chem. 2003, 51, 3309–3312; c) I. GꢅlÅin, Innova-
tive Food Sci. Emerging Technol. 2010, 11, 210–218;
d) J. Soeur, J. Eilstein, G. Lereaux, C. Jones, L. Marrot,
J. Free Radicals Biol. Med. 2015, 78, 213–223.
[14] M. S. Kocak, C. Sarikurkcu, M. Cengiz, S. Kocak, M. C.
Uren, B. Tepe, Ind. Crops Prod. 2016, 85, 204–212.
[15] A. Trivellini, M. Luccesini, R. Maggini, H. Mosadegh,
T. S. S. Villamarin, P. Vernieri, A. Mensuali-Sodi, A.
Pardossi, Ind. Crops Prod. 2016, 83, 241–254.
References
[1] K. Kirimura, H. Gunji, R. Wakayama, T. Hattori, Y.
Ishii, Biochem. Biophys. Res. Commun. 2010, 394, 279–
284.
[2] K. Kirimura, S. Yanaso, S. Kosaka, K. Koyama, T. Hat-
tori, Y. Ishii, Chem. Lett. 2011, 40, 206–208.
[3] A. S. Lindsey, H. Jeskey, Chem. Rev. 1957, 57, 583–614.
[4] a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007,
107, 2365–2387; b) D. J. Darensbourg, Inorg. Chem.
2010, 49, 10765–10780; c) R. Martin, A. W. Kleij,
ChemSusChem 2011, 4, 1259–1264; d) M. Aresta, A.
Dibenedetto, Dalton Trans. 2007, 2975–2992; e) Y.
Tsuji, T. Fujihara, Chem. Commun. 2012, 48, 9956–
9964; f) K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev.
2011, 40, 2435–2452; g) C. J. Whiteoak, A. Nova, F. Ma-
seras, A. W. Kleij, ChemSusChem 2012, 5, 2032–2038;
h) S. Nakamura, Org. Biomol. Chem. 2014, 12, 394–405.
[5] R. Lewin, M. L. Thompson, J. Micklefield, Enzyme
Carboxylation and Decarboxylation, in: Science of Syn-
thesis: Biocatalysis in Organic Synthesis, (Eds.: K.
Faber, W.-D. Fessner, N. J. Turner), Thieme, Stuttgart,
New York, 2015, Vol. 2, pp 133–157.
[16] M. Sato, H. Toyazaki, Y. Yoshioka, N. Yokoi, T. Yama-
saki, Chem. Pharm. Bull. 2010, 58, 98–102.
[17] a) F. Schweigert, Process for the protection of photola-
bile
active
substances,
German
Patent
DE102011052708 A1, 2013; Chem. Abstr. 158, 271088;
b) K. Klausing, V. Smith, M.-J. R. Shen, J. Moore, K.
Hall, Methods using polyphenols for inhibiting light-in-
duced degradation of nucleic acids and for detecting flu-
orescent-tagged
nucleic
acids,
U.S.
Patent
20120196758A1, 2012; Chem. Abstr. 157, 287238.
[18] a) B. M. Rezk, G. R. M. M. Haenen, W. J. F. van der
Vijgh, A. Bast, Biochem. Biophys. Res. Commun. 2002,
295, 9–13; b) E.-B. Yang, K. Zhang, L. Y. Cheng, P.
Mack, Biochem. Biophys. Res. Commun. 1998, 245,
435–438; c) L. Bungaruang, A. Gutmann, B. Nidetzky,
Adv. Synth. Catal. 2016, 358, 486–493.
[6] A. Alissandratos, C. J. Easton, Beilstein J. Org. Chem.
2015, 11, 2370–2387.
[7] S. M. Glueck, S. Gꢅmꢅs, W. M. F. Fabian, K. Faber,
Chem. Soc. Rev. 2010, 39, 313–328.
[19] S. He, X. Yan, Curr. Med. Chem. 2013, 20, 1005–1017.
[20] G. Regnier, R. Canevari, P. Desnoyers, 4-Pentyl-6-hy-
droxysalicylic acid – for treatment of thromboembolism
[8] a) T. Yoshida, Y. Hayakawa, T. Matsui, T. Nagasawa,
Arch. Microbiol. 2004, 181, 391–397; b) Y. Iwasaki, K.
Kino, H. Nishide, K. Kirimura, Biotechnol. Lett. 2007,
Adv. Synth. Catal. 0000, 000, 0 – 0
6
ꢂ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!