A R T I C L E S
Molander and Dehmel
the ring closing metathesis reaction (RCM) as the key step to
form the macrocyclic ring.3 Besides the RCM approaches,
macrocyclizations have been accomplished using intramolecular
Suzuki4a or Stille couplings.4b For related members of this class,
many total syntheses and synthetic approaches have also been
reported.5
Porco and Wang recently published the first and thus far only
total synthesis of oximidine II (1a).6 Their elegant synthesis
also leads to the macrolactone by a RCM approach and
introduces the enamide side chain as the last stage employing
Porco’s efficient coupling method of vinyl halides and amides.7
Although other macrolactonization routes and cross-coupling
entries to the macrocyclic ring of the oximidines have been
briefly explored,8 difficulties in the construction of the highly
strained 12-membered macrolactone have been encountered.8a,b
The syntheses and synthetic approaches toward this entire class
of natural products have been reviewed recently.9
Herein, we report a formal total synthesis of oximidine II
that overcomes problems associated with other cross-coupling
approaches to this molecule. The successful campaign employed
an intramolecular Suzuki-coupling reaction of a highly func-
tionalized potassium organotrifluoroborate for the macrocy-
clization.
Retrosynthesis
Our initial concept for the synthesis of the macrolactone is
outlined in Figure 2. The key step envisioned was the macro-
cyclization via an intramolecular Suzuki-coupling reaction using
potassium organotrifluoroborates.10 Protecting group manipula-
tions on the macrolactone would readily give alcohol 6, which
Figure 2. Retrosynthetic analysis of oximidine II (1a).
is an intermediate in Porco’s oximidine II synthesis. Inherent
in this strategy was the notion that Pd-catalyzed cross-coupling
reactions have a distinct advantage over macrolactonizations
in approaches to constrained systems.8b Thus, the postulated
intermediate for the former reactions, a metallacycle, contains
two additional long Pd-C bonds that would translate into
reduced strain in the transformation leading to the polyolefinic
system. Ring contraction by reductive elimination of the inter-
mediate organometallic generates the desired macrolactone. In
contrast to Sonogashira-Castro-Stephens type approaches,8b
which create added strain owing to the introduction of the linear
alkyne into the macrolactone, the Suzuki reaction precursor will
already have in place all of the double bonds in the required
geometry, which also represents the lowest energy configuration
of the final product.6,8a The two stereogenic centers of the sub-
strate would be created by a diastereoselective, chelation-con-
trolled addition of organometallic nucleophiles derived from 13
to an R-chiral aldehyde, establishing the two stereogenic centers
of the natural product.
(2) (a) Boyd, M. R.; Farina, C.; Befiore, P.; Gagliardi, S.; Kim, J. W.;
Hayakawa, Y.; Beutler, J. A.; McKee, T. C.; Bowman, B. J.; Bowman, E.
J. J. Pharmacol. Exp. Ther. 2001, 297, 114-120. (b) Beutler, J. A.; McKee,
T. C. Curr. Med. Chem. 2003, 10, 787-796.
(3) (a) Yadav, J. S.; Srihari, P. Tetrahedron: Asymmetry 2004, 15, 81-89.
(b) Herb, C.; Maier, M. E. J. Org. Chem. 2003, 68, 8129-813. (c) Yang,
K. L.; Blackman, B.; Diederich, W.; Flaherty, P. T.; Mossman, C. J.; Roy,
S.; Ahn, Y. M.; Georg, G. I. J. Org. Chem. 2003, 68, 10030-10039. (d)
Yang, K. L.; Haack, T.; Blackman, B.; Diederich, W. E.; Srinivas Pusuluri,
S. R.; Georg, G. I. Org. Lett. 2003, 5, 4007-4009. (e) Smith, A. B., III.;
Zheng, J. Y. Tetrahedron 2002, 58, 6455-6471. (f) Wu, Y. S.; Liao, X.
B.; Wang, R. F.; Xie, X.-S.; De Brabander, J. K. J. Am. Chem. Soc. 2002,
124, 3245-3253. (g) Fu¨rstner, A.; Dierkes, T.; Thiel, O. R.; Blanda, G.
Chem. Eur. J. 2001, 7, 5286-5298. (h) Smith, A. B., III.; Zheng, J. Y.
Synlett 2001, 1019-1023. (i) Snider, B. B.; Song, F. B. Org. Lett. 2001,
3, 1817-1820. (j) Wu, Y. S.; Esser, L.; De Brabander, J. K. Angew. Chem.
Int. Ed. 2000, 39, 4308-4310. (k) Labrecque, D.; Charron, S.; Rej, R.;
Blais, C.; Lamothe, S. Tetrahedron Lett. 2001, 42, 2645-2648.
(4) (a) Bauer, M.; Maier, M. E. Org. Lett. 2002, 4, 2205-2208. (b) Holloway,
G. A.; Hu¨gel, H. M.; Rizzacasa, M. A. J. Org. Chem. 2003, 68, 2200-
2204.
(5) (a) Graetz, B. R.; Rychnovsky, S. D. Org. Lett. 2003, 5, 3357-3360. (b)
Su, Q. B.; Panek, J. S. J. Am. Chem. Soc. 2004, 126, 2425-2430. (c) Lewis,
A.; Stefanuti, I.; Swain, S. A.; Smith, S. A.; Taylor, R. J. K. Org. Biomol.
Chem. 2003, 1, 104. (d) Lewis, A.; Stefanuti, I.; Swain, S. A.; Smith, S.
A.; Taylor, R. J. K. Tetrahedron Lett. 2001, 42, 5549-5552. (e) Nicolaou,
K. C.; Kim, D. W.; Baati, R. K.; O’Brate, A.; Giannakakou, P. Chem.
Eur. J. 2003, 9, 6177-6191. (f) Nicolaou, K. C.; Kim, D. W.; Baati, R.
Angew. Chem., Int. Ed. 2002, 41, 3701-3704. (g) Bhattacharjee, A.; Seguil,
O. R.; De Brabander, J. K. Tetrahedron Lett. 2001, 42, 1217-1220. (h)
Shen, R. C.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco, J. A., Jr. J.
Am. Chem. Soc. 2003, 125, 7889-7901. (i) Shen, R. C.; Lin, C. T.; Porco,
J. A., Jr. J. Am. Chem. Soc. 2002, 124, 5650-5651. (j) Hilli, F.; White, J.
M.; Rizzacasa, M. A. Org. Lett. 2004, 6, 1289-1292. (k) Ku¨hnert, S.;
Maier, M. E. Org. Lett. 2002, 4, 643-646.
Synthetic Efforts
The diene-yne nucleophile 14 was readily available in four
steps employing a double Sonogashira coupling on cis-1,2-
dichloroethylene 15 (Scheme 1).11 The TMS-group in 16 was
converted to the bromide, and a regioselective reduction of the
brominated alkyne to the (Z,Z)-diene according to Brown12
provided 13 in good overall yield. Bromine-lithium exchange
(6) Wang, X.; Porco, J. A., Jr. J. Am. Chem. Soc. 2003, 125, 6040-6041.
(7) Shen, R.; Porco, J. A., Jr. Org. Lett. 2000, 2, 1333-1336.
(8) (a) Haack, T.; Kutkaya, S.; Snyder, J. P.; Georg, G. I. Org. Lett. 2003, 5,
5019-5022. (b) Coleman, R. S.; Garg, R. Org. Lett. 2001, 3, 3487-3490.
(c) Harvey, J. E.; Raw, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2003, 44,
7209-7212. (d) Scheufler, F.; Maier, M. E. Synlett 2001, 1221-1224.
(9) Yet, L. Chem. ReV. 2003, 103, 4283-4306.
(10) (a) Molander, G. A.; Rivero, M. R. Org. Lett. 2002, 4, 107-109. (b)
Molander, G. A.; Bernardi, C. J. Org. Chem. 2002, 67, 8424-8429. (c)
Darses, S.; Genet, J.-P. Eur. J. Org. Chem. 2003, 4313-4327.
(11) (a) Porco, J. A., Jr.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber, S.
L. J. Am. Chem. Soc. 1990, 112, 7410-7411. (b) Lu, Y.-F.; Harwig, C.
W.; Fallis, A. G. J. Org. Chem. 1993, 58, 4202-4204. (c) Lu, Y.-F.;
Harwig, C. W.; Fallis, A. G. Can. J. Chem. 1995, 73, 2253-2262.
(12) (a) Brown, H. C.; Blue, C. D.; Nelson, D. J.; Bhat, N. G. J. Org. Chem.
1989, 54, 6064-6067. (b) Hoshi, M.; Arase, A. Synth. Commun. 1997,
27, 567-572. (c) Zweifel, G.; Arzoumanian, H. J. J. Am. Chem. Soc. 1967,
89, 5086-5088.
9
10314 J. AM. CHEM. SOC. VOL. 126, NO. 33, 2004