(see graphical abstract) via the venerable Huisgen 1,3-DCRs
of nitrile oxides and azides to acetylenes.8 This work stems
from our recent studies on C-glycosyl amino acid2 and
heterocycle amino acid9 synthesis as the basic operation
toward the construction of designed bioactive molecules,
peptides in primis, with new biological properties.
Scheme 3. Synthesis of Masked and Protected Azido
Functionalized Glycines 5 and 11
Toward such a target as the sugar and amino acid
functionalized isoxazole 3 and triazole 6 systems via 1,3-
DCRs, a retrosynthetic blueprint (Scheme 1) was carried out
Scheme 1. Synthetic Strategy
Taking advantage of our earlier experience in nitrile oxide
generation from C-glycosyl aldoximes,10b we first treated a
DMF solution of the C-galactosyl oxime 12a and alkyne 1
(10.0 equiv) with N-bromosuccinimide (NBS) and then added
Et3N dropwise (Scheme 4). Chromatography of the reaction
Scheme 4. Initial Approach toward Synthesis of C-Glycosyl
Isoxazole Alanines
by taking into account the ready access to anomeric sugar
nitrile oxides 2 and acetylenes 4 from recent chemistry
developed in our and other laboratories.10,11 Appropriate
partners for the planned cycloadditions were the acetylene
1 and the azide 5, both carrying the N-Boc oxazolidine ring
as a valuable masked glycinyl moiety.9a,12 The preparation
of these new reagents was straightforward starting from the
protected homoserinal9 7 and the phosphonate13 8 for the
synthesis of 1 (Scheme 2), and the protected serinol14 10
Scheme 2. Synthesis of Masked and Protected Ethynyl
Functionalized Glycines 1 and 9
mixture furnished the 3,5-disubstituted isoxazole cycloadduct
13a (4-H δ 6.23 ppm, DMSO-d6, 120 °C) in good yield
(68%) as the sole regioisomer,15 alongside the furoxan side
product 14a.10b Noteworthy is that the unreacted dipolaro-
phile 1 was recovered almost completely in very pure form.
Under the same conditions, the C-glucosyl oxime 12b and
(9) (a) Dondoni, A.; Massi, A.; Minghini, E.; Sabbatini, S.; Bertolasi,
V. J. Org. Chem. 2003, 68, 6172-6183. (b) Dondoni, A.; Massi, A.;
Minghini, E.; Bertolasi, V. Tetrahedron 2004, 60, 2311-2326.
(10) C-Glycosyl nitrile oxides: (a) Baker, K. W. J.; March, A. R.;
Parsons, S.; Paton, M.; Stewart, G. W. Tetrahedron 2002, 58, 8505-8513.
(b) Dondoni, A.; Giovannini, P. P. Synthesis 2002, 1701-1706.
(11) Ethynyl C-glycosides: (a) Nishika, T.; Ishikawa, M.; Isobe, M.
Synlett 1999, 123-125. (b) Dondoni, A.; Mariotti, G.; Marra, A. J. Org.
Chem. 2002, 67, 4475-4486.
and commercially available reagents for the synthesis of 5
(Scheme 3).
(7) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2001, 40, 2004-2021. (b) Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson,
J. C.; Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 14397-14402. (c) Perez-
Balderas, F.; Ortega-Munoz, M.; Morales-Sanfrutos, J.; Hernandez-Mateo,
F.; Calvo-Flores, F. G.; Calvo-Asin, J. A.; Isac-Garcia, J.; Santoyo-Gonzalez,
F. Org. Lett. 2003, 5, 1951-1954. (d) Lee, L. V.; Mitchell, M. L.; Huang,
S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003,
125, 9588-9589.
(8) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598; 633-
645. For reviews, see: (a) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry;
Wiley: New York, 1984. (b) Padwa, A.; Pearson, W. H. Synthetic
Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products; Wiley: New York, 2003.
(12) (a) Garner, P.; Yoo, J. U.; Sarubu, R.; Kennedy, V. O.; Youngs,
W. J. Tetrahedron 1998, 54, 9303-9316. (b) Dondoni, A.; Marra, A.; Massi,
A. J. Org. Chem. 1999, 64, 933-944.
(13) Callant, P.; D’Haenens, L.; Vandewall, M. Synth. Commun. 1984,
14, 155-161.
(14) Dondoni, A.; Perrone, D. Org. Synth. 1999, 77, 64-77.
(15) Gru¨nanger, P.; Vita-Finzi, P. The Chemistry of Heterocyclic
Compounds. Isoxazoles; Wiley: New York, 1991; Vol. 49, Part. 1, pp 24-
55 and 183-186.
2930
Org. Lett., Vol. 6, No. 17, 2004