be accessible by chain extension of the primary alcohol of 2
with a propionate equivalent. Hydroboration-oxidation of 3
which could derive asymmetrically from racemic 4 would
constitute a short efficient synthesis. (-)-Malyngolide, an
antibiotic possessing significant activity against Mycobac-
terium smegmatis and Streptococcus pyogenes, was isolated
from the blue green alga Lyngbya Majuscula.3 The first
asymmetric synthesis by Mukaiyama involves use of a chiral
auxiliary.4a Most syntheses employ either chiral auxiliaries
or building blocks from the “chiral pool”.4-6 Few employ
asymmetric catalysis7 which allows equal access to either
enantiomer.
With the availability of the vinylglycidol 3 with high
enantiopurity, the stage is now set for the synthesis of either
enantiomer of malyngolide. The initial strategy examined
the introduction of the additional required propionate unit
in an intramolecular fashion. Thus, the silylated vinylglycidol
7 (see Scheme 2) was deprotected to the alcohol 8 (eq 3).
Scheme 2. Synthesis of (-)-Malyngolidea
An advantage of the deracemization of vinyl epoxides via
AAA is the ease of access of the substrate. The known
bromoketone 58 produced from 2-undecanone by the pro-
cedure of Zav’ylov9 reacts with vinylmagnesium bromide
to produce epoxide 410 directly in 65% yield (see eq 2).11
a (a) TIPSOSO2CF3, (C2H5)3N, CH2Cl2, 0 °C; (b) 9-BBN-H, 4
mol % of (Ph3P)3RhCl, THF, rt; H2O2, NaOH, THF, 50 °C; (c)
CH3SO2Cl, (C2H5)3N, CH2Cl2, -78 °C; (d) CH3CH(CO2C2H5)2,
NaH, PhCH3, 100 °C; (e) DDQ, CH2Cl2, H2O, rt; (f) NaOH, H2O,
C2H5OH, reflux; HOAc; PhCH3, reflux; (g) TBAF, THF, 0 °C; (h)
see text.
Exposure of a 1:1 mixture of racemic epoxide 4 and
p-methoxybenzyl alcohol to 1 mol % of a palladium(0)
catalyst and 3 mol % of ligand 6 in the presence of 1 mol %
of triethylboron gave PMB ether 310 as the exclusive
regioisomer. Chiral HPLC analysis established the ee as
97-99%. Alternatively, the enantiomeric ether ent-3 was
obtained by simply changing the ligand to ent-6.
Acylation of the magnesium alkoxide of 812 selectively
produced the tertiary propionate 9 uncomplicated by any silyl
migration. On the other hand, the migration of the propionate
(2) Faller, J. W.; Thomsen, M. E.; Mattina, M. J. J. Am. Chem. Soc.
1971, 93, 2642. Also see: Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
1998, 120, 9074.
(3) Cardllina, J. H., II; Moore, R. E.; Arnold, E. V.; Clardy, J. J. Org.
Chem. 1979, 44, 4039.
(6) Other asymmetric syntheses: (a) Noda, Y.; Kikuchi, M. Synth.
Commun. 1985, 15, 1245. (b) Giese, B.; Rupaner, R. Liebigs Ann. Chem.
1987, 231. (c) Asaoka, M.; Hayashibe, S.; Sonoda, S.; Takei, H. Tetrahedron
1991, 47, 6967. For enzymatic synthesis that permits access to single
enantiomers, see: (d) Sato, T.; Maeno, H.; Noro, T.; Fujisawa, T. Chem.
Lett. 1988, 1739. (e) Suemune, H.; Harabe, T.; Xie, Z.-F.; Sakai, K. Chem.
Pharm. Bull. 1988, 36, 4337.
(7) Catalytic asymmetric syntheses: (a) Flo¨rke, H.; Schaumann. E.
Liebigs Ann. 1996, 147. (b) Konno, H.; Hiroya, K.; Ogasawara, K.
Tetrahedron Lett. 1997, 38, 6023. (c) Kanada, R. M.; Taniguchi, T.;
Ogasawara, K. Tetrahedron Lett. 2000, 41, 3631.
(4) Chiral auxiliary syntheses: (a) Sakito, Y.; Tanaka, S.; Asami, M.;
Mukaiyama, T. Chem. Lett. 1980, 1223. (b) Mukaiyama, T. Tetrahedron
1981, 37, 4111. (c) Kogure, T.; Eliel, E. L. J. Org. Chem. 1984, 49, 576,
(d) Guingant, A. Tetrahedron: Asymmetry 1991, 2, 415. (e) Enders, D.;
Knopp, M. Tetrahedron 1996, 52, 5805. (f) Maezaki, N.; Matsumori, Y.;
Shogaki, T.; Soejima, M.; Tanaka, T.; Ohishi, H.; Iwata, C. Chem. Cammun.
1997, 1755. (g) Winter, E.; Hoppe, D. Tetrahedron 1998, 54, 10329. (h)
Maezaki, N.; Matsumori, Y.; Shogaki, T.; Soejima, M.; Ohishi, H.; Tanaka,
T.; Iwata, C. Tetrahedron 1998, 54, 13087.
(5) Chiral pool syntheses: (a) Pougny, J.-R.; Rollin, P.; Sinay, P.
Tetrahedron Lett. 1982, 23, 4929. (b) Ho, P.-T.; Wong, S. Can. J. Chem.
1985, 63, 2221. (c) Tokunaga, Y.; Nagano, H.; Shiota, M. J. Chem. Soc.,
Perkin Trans. 1 1986, 581. (d) Trinh, M.-C.; Florent, J.-C.; Monneret, C.
Tetrahedron 1988, 44, 6633. (e) Honda, T.; Imai, M.; Keino, K.; Tsubuki,
M. J. Chem. Soc., Perkin Trans. 1 1990, 2677. (f) Ichimoto, I.; Machiya,
K.; Kirihata, M.; Ueda, H. Agric. Biol. Chem. 1990, 54, 657. (g) Matsuo,
K.; Hasuike, Y.; Kado, H. Chem. Pharm. Bull. 1990, 38, 2847. (h) Nagano,
H.; Ohno, M.; Miyamae, Y. Bull Chem. Soc. Jpn. 1992, 65, 2814. (i) Ohira,
S.; Ida, T.; Moritani, M.; Hasegawa, T. J. Chem. Soc., Perkin Trans. 1
1998, 293. (j) Matsuo, K.; Matsumoto, T.; Nishiwaki, K. Heterocycles 1998,
48, 1213. (k) Carda, M.; Castillo, E.; Rodriguez, S.; Marco, J. A.
Tetrahedron Lett. 2000, 41, 5511.
(8) Bryant, M. W.; Smith, R. A. J.; Wong, L. Aust. J. Chem. 1982, 35,
2529.
(9) (a) Zav’yalov, S. I.; Kravchenko, N. E.; Ezhova, G. I.; Sitkareva, I.
V. Bull. Acad. Sci. USSR DiV. Chem. Sci. 1989, 38, 2152. (b) Zav’yalov,
S. I.; Ezhova, G. I.; Sitkareva, I. V.; Dorofeeva, O. V.; Zavozin, A. G.;
Rumyantseva, E. E. Bull. Acad. Sci. USSR DiV. Chem. Sci. 1989, 38, 2204.
(10) This compound has been satisfactorily characterized spectroscopi-
cally and the elemental composition has been established by combustion
analysis or high-resolution mass spectrometry.
(11) Sato, S.; Matsuda, I.; Izumi, Y. J. Organomet. Chem. 1989, 359,
255.
(12) Krafft, M. E.; Dasse, O. A.; Jarrett, S.; Fievre, A. J. Org. Chem.
1995, 60, 5093.
4014
Org. Lett., Vol. 2, No. 25, 2000