A R T I C L E S
Nicolaou et al.
Scheme 4. Attempts to Accomplish Anion-Based
phosphonate irreversibly drove our previously successful Hor-
ner-Wadsworth-Emmons (HWE) macrocyclizations,1,6 we
then turned to the synthesis of compound 24. Our expectation
was that Dieckmann condensation would overcome this prob-
lem,7 especially since the Vedejs group had reported8 success
in a related approach in their model studies toward 1. Unfor-
tunately, this advanced intermediate similarly proved recalcitrant
to macrocyclization under any conditions probed (including
NaH, LiHDMS, KOt-Bu, and NaOMe).
Macrocyclizationsa
2. Revised Retrosynthetic Analysis and Execution of the
New Strategy. Although this litany of failures was certainly
frustrating, it pushed us to think even more deeply about solving
the problem of C29-C30 functionalization. Mindful of our
previous use of the McMurry reaction (a pinacol coupling) to
form a highly strained eight-membered ring in our total synthesis
of Taxol,9 we hypothesized that perhaps we could enlist its
hetero variant to fashion a fully functionalized C29-C30 bond
for diazonamide A from a precursor aldehyde-oxime. This idea
seemed encouraging since intramolecular hetero-pinacol cou-
plings10 have been used on numerous occasions to fashion a
diverse range of rings ever since the late 1970s when the Corey,
Hart, and Bartlett groups independently demonstrated11 that
oximes could serve as competent radical acceptors. For example,
as shown in Part A of Scheme 5, the Naito group recently em-
12
ployed a hetero-pinacol cyclization initiated by SmI2 to effi-
ciently convert 25 into a seven-membered ring (26) appropriately
functionalized to complete a total synthesis of balanol (27).13
Despite this wealth of precedent, however, up to the end of
the year 2000, no variant of the hetero-pinacol reaction had been
successfully applied in a macrocyclization event to generate a
ring size greater than seven, despite precedent for medium-size
ring formation in related systems employing dialdehydes. In
fact, a number of studies seeking to form such rings met only
with failure.10a Nevertheless, we thought that the diazonamide
(6) Nicolaou, K. C.; Snyder, S. A.; Simonsen, K. B.; Koumbis, A. E. Angew.
Chem., Int. Ed. 2000, 39, 3473-3478.
(7) Numerous applications of this strategy in the synthesis of complex molecules
have appeared. For a representative survey, see: Davis, B. R.; Garratt, P.
J. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 2, pp 806-829.
(8) Vedejs, E.; Zajac, M. A. Org. Lett. 2001, 3, 2451-2454. For the successful
application of the same approach to the revised structure of diazonamide
A, see: Vedejs, E.; Zajac, M. A. Org. Lett. 2004, 6, 237-240.
(9) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R.
K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.;
Sorensen, E. J. Nature 1994, 367, 630-633.
(10) (a) Ritte, D.; Hazell, R.; Skrydstrup, T. J. Org. Chem. 2000, 65, 5382-
5390. (b) Keck, G. E.; Wager, T. T.; Rodriquez, J. F. D. J. Am. Chem.
Soc. 1999, 121, 5176-5190. (c) Keck, G. E.; McHardy, S. F.; Murry, J.
A. J. Org. Chem. 1999, 64, 4465-4476. (d) Tormo, J.; Hays, D. S.; Fu, G.
C. J. Org. Chem. 1998, 63, 201-202. (e) Keck, G. E.; Wager, T. T. J.
Org. Chem. 1996, 61, 8366-8367. (f) Kiguchi, T.; Tajiri, K.; Ninomiya,
I.; Naito, T.; Hiramatsu, H. Tetrahedron Lett. 1995, 36, 253-256. (g)
Camps, P.; Font-Bardia, M.; Munoz-Torrero, D.; Solans, X. Liebigs Ann.
1995, 523-535. (h) Shono, T.; Kise, N.; Fujimoto, T.; Yamanami, A.;
Nomura, R. J. Org. Chem. 1994, 59, 1730-1740. (i) Naito, T.; Tajiri, K.;
Harimoto, T.; Ninomiya, I.; Kiguchi, T. Tetrahedron Lett. 1994, 35, 2205-
2206. (j) Marco-Contelles, J.; Martinez, L.; Martinez-Grau, A.; Pozuelo,
C.; Jimeno, M. L. Tetrahedron Lett. 1991, 32, 6437-6440.
a Reagents and conditions: (a) 5 (1.1 equiv), 12, 13, or 14 (1.0 equiv),
Pd(dppf)Cl2 (0.2 equiv), K2CO3 (5.0 equiv), DME, 85 °C, 12 h; (b) aq HF
(48%, excess), MeCN, 0 °C, 45 min; (c) 2,2-DMP, acetone, 25 °C, 5 min;
(d) DMSO (10 equiv), (COCl)2 (5.0 equiv), CH2Cl2, -78 °C, 45 min; Et3N
(20 equiv), CH2Cl2, -78 °C, 15 min or Dess-Martin periodinane (3.0
equiv), NaHCO3 (10 equiv), CH2Cl2, 25 °C, 1 h, 51% overall for 18, 10%
overall for 19, 40% overall for 20. dppf ) diphenylphosphinoferrocene;
DME ) ethylene glycol dimethyl ether; 2,2-DMP ) 2,2-dimethoxypropane.
(11) (a) Corey, E. J.; Pyne, S. G. Tetrahedron Lett. 1983, 24, 2821-2824. (b)
Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631-1633. (c)
Bartlett, P. A.; McLaren, K. L.; Ting, P. C. J. Am. Chem. Soc. 1988, 110,
1633-1634.
(12) (a) Namy, J. L.; Girard, P.; Kagan, H. B. NouV. J. Chim. 1977, 1, 5-7. (b)
Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693-
2698. For recent review articles on the application of SmI2 in organic
synthesis, see: (c) Kagan, H. B. Tetrahedron 2003, 59, 10351-10372. (d)
Krief, A.; Laval, A.-M. Chem. ReV. 1999, 99, 745-778. (e) Molander, G.
A.; Harris, C. R. Tetrahedron 1998, 54, 3321-3354. (f) Skrydstrup, T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 345-347. (g) Molander, G. A.;
Harris, C. R. Chem. ReV. 1996, 96, 307-338.
LDA, or KOt-Bu) universally failed to deliver anything
resembling the desired product. Instead, we typically observed
decomposition and, in some cases, recovered starting material.
Recognizing that the failures in these couplings could reflect
the high proclivity for retro-aldol reactions, since nothing existed
to prevent such an outcome in the same way that the loss of a
(13) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J.
Org. Chem. 1998, 63, 4397-4407.
9
10176 J. AM. CHEM. SOC. VOL. 126, NO. 32, 2004