C O M M U N I C A T I O N S
Figure 3. Representative phase contrast AFM image of a Eu(dbmPLA)3-
(bpyPCL2) block copolymer film (swelled with water vapor prior to analysis
to enhance contrast) with a schematic representation of the lamellar
morphology (A ) PCL, B ) PLA, b ) Eu center).
undergo microphase separation. Thin films of 4 were cast from
5% CH2Cl2 solution by slow evaporation on a mercury surface.
Phase contrast images show a lamellar microstructure with a period
of 17.5 nm (Figure 3). When ordered films of 4 were heated,
morphological changes consistent with thermally induced ligand
dissociation and fragmentation of the block copolymer at the block
junction were noted. More detailed investigation of this phenom-
enon, additional spectroscopic analyses, and further compositional
and architectural modification are underway.
Acknowledgment. We thank the National Science Foundation
(CHE-9733466, MIT Center for Materials Science and Engineering)
and the Petroleum Research Fund, administered by the ACS, for
partial support for this work. John E. McAlvin, Siddhartha R.
Shenoy, and Xufeng Wu are acknowledged for setting the stage
for this work.
Figure 2. Emission spectra for (a) Eu(dbmPLA)3 3 and (b) Eu(dbmPLA)3-
(bpyPCL2) 4 in CH2Cl2 solution (excitation λ: 465.8 nm).
Table 1. Luminescence Lifetimesa (τ1 and τ2) for Europium
Dibenzoylmethane Complexes and Their Bipyridine Adducts
Supporting Information Available: Experimental details for the
synthesis of Eu complexes, the measurement of emission spectra and
lifetimes for Eu complexes, and the AFM study of thin films of 4 (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
complex
τ1 (ms)
RW b (%)
τ2 (ms)
RW b (%)
1
2
Eu(dbm)3
0.021
0.108
0.119
0.102
0.111
86
52
13
100
100
0.302
0.349
0.371
14
48
87
Eu(dbmPLA)3 (3)
Eu(dbmPLA)3 c (3) film
Eu(dbm)3(bpy)
Eu(dbmPLA)3(bpyPCL2) (4)
References
a 1 mM CH2Cl2 solutions monitored at 612 nm after excitation at 465.8
nm. b Relative weighting (RW) of component in double exponential fits.
c Cast from CH2Cl2 by slow evaporation onto a glass substrate.
(1) (a) Richardson, F. S. Chem. ReV. 1982, 82, 541. (b) Parker, D.; Williams,
J. A. G. J. Chem. Soc., Dalton Trans. 1996, 3613. (c) Sabbatini, N. Coord.
Chem. ReV. 1993, 123, 201. (d) de Sa´, G. F.; Malta, O. L.; de Mello
Donega´, C.; Simas, A. M.; Longo, R. L.; Santa-Cruz, P. A.; da Silva, E.
F. Coord. Chem. ReV. 2000, 196, 165.
(2) Elbanowski, M.; Makowska, B. J. Photochem. Photobiol. A: Chemistry
1996, 99, 85.
(3) For example, see: (a) Male, N. A. H.; Salata, O. V.; Christou, V. Synth.
Met. 2002, 126, 7. (b) Yu, G.; Liu, Y.; Wu, X.; Zhu, D.; Li, H.; Jin, L.;
Wang, M. Chem. Mater. 2002, 12, 2537.
(4) Kawa, M.; Freche´t, J. M. J. Chem. Mater. 1998, 10, 286 and references
therein.
(5) (a) Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225.
(b) Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2001, 13,
3140. (c) Manners, I. Science 2001, 294, 1664.
(6) Otway, D. J.; Rees, W. S., Jr. Coord. Chem. ReV. 2000, 210, 279.
(7) For example, see: Richardson, F. S.; Brittain, H. G. J. Am. Chem. Soc.
1981, 103, 18 and references therein.
(8) Corbin, P. S.; Webb, M. P.; McAlvin, J. E.; Fraser, C. L. Biomacro-
molecules 2001, 2, 223 and references therein.
(bpyPCL2) (4) was targeted (PCL ) poly(ꢀ-caprolactone); Mn(NMR)
) 7.4 kDa; Mw(MALLS) ) 6.7 kDa, PDI ) 1.07).8 In contrast to
the homoleptic Eu complexes, lifetime data for both Eu(dbm)3-
(bpy) and the block copolymer complex Eu(dbmPLA)3(bpyPCL2)
exhibit single-exponential decay, consistent with single Eu species.
Additional evidence for sample homogeneity for 4 is provided by
the relative sharpness of the emission intensity feature arising from
5
7
the D0 f F0 transition observed at 579.7 nm (Figure 2b). The
sharpness of this nondegenerate transition indicates that all the Eu
sites in the sample have essentially identical ligand coordination
and structural environments. In metal template assisted block
copolymer synthesis, energetic benefits of chelation are balanced
against the tendency of dissimilar polymers to separate from each
other. Adduct and, thus, block copolymer formation may be favored
for the dbmPLA/bpyPCL2 combination because they are comparable
polyesters. For dissimilar polymers, mixtures may be observed at
equilibrium, with solvent playing a significant role.
(9) Batista, H. J.; de Andrade, A. V. M.; Longo, R. L.; Simas, A. M.; de Sa´,
G. F.; Ito, N. K.; Thompson, L. C. Inorg. Chem. 1998, 37, 3542 and
references therein.
(10) (a) Fraser, C. L.; Smith, A. P. J. Polym. Sci, Part A: Polym. Chem. 2000,
38, 4704. (b) Schubert, U. S.; Heller, M. Chem. Eur. J. 2001, 7, 5252.
(11) Horie, K.; Ushiki, H.; Winnik, F. Molecular Photonics: Fundamentals
and Practical Aspects; Wiley-VCH: Tokyo, 2000.
(12) For other examples of dynamic structural motifs, see: Ramstro¨m, O.; Lehn,
J.-M. Nature ReV. Drug DiscoVery 2002, 1, 26.
As further confirmation of adduct formation, AFM studies were
conducted to determine whether Eu(dbmPLA)3(bpyPCL2) films
JA0261269
9
J. AM. CHEM. SOC. VOL. 124, NO. 29, 2002 8527