10.1002/anie.201912753
Angewandte Chemie International Edition
COMMUNICATION
bromides or chlorides to alkyl bromides in an undivided cell,
c) S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27–45; d) Y. Jiang, K. Xu, C.
Zeng, Chem. Rev. 2018, 118, 4485–4540; e) S. R. Waldvogel, S. Lips,
M. Selt, B. Riehl, C. J. Kampf, Chem. Rev. 2018, 118, 6706–6765; f) K.
D. Moeller, Chem. Rev. 2018, 118, 4817–4833; g) Q.-L. Yang, P. Fang,
T.-S. Mei, Chin. J. Chem. 2018, 36, 338–352; h) Z.-W. Hou, Z.-Y. Mao,
H.-C. Xu, Synlett 2017, 28, 1867–1872; i) E. J. Horn, B. R. Rosen, P. S.
Baran, ACS Cent. Sci. 2016, 2, 302–308.
affording
1,1-diarylalkanes
with
good
yields
and
regioselectivities. The protocol is operationally simple and
robust. Further research to explore the mechanism and to
develop more transition metal-catalyzed electrochemical
reductive relay cross-couplings is currently underway in our
laboratory.
[9]
a) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–
13319; b) J.-Y. Nédélec, J. Périchon, M. Troupel, Top. Curr. Chem.
1997, 185, 141–173; c) J. Chaussard, J.-C. Folest, J.-Y. Nedelec, J.
Perichon, S. Sibille, M. Troupel, Synthesis 1990, 369–381.
Acknowledgements
[10]
For selected examples on electrochemical coupling of activated alkyl
halides, see: a) J. M. Bégouin, S. Claudel, C. Gosmini, Synlett 2009,
3192–3194; b) M. Durandetti, J.-Y. Nédélec, J. Périchon, J. Org. Chem.
1996, 61, 1748–1755; c) A. Conan, S. Sibille, E. d’lncan, J. Périchon, J.
Chem. Soc., Chem. Commun. 1990, 48–49.
This work was financially supported by the Strategic Priority
Research Program of the Chinese Academy of Sciences (Grant
XDB20000000), NSF of China (Grants 21821002 and
21772222), and S&TCSM of Shanghai (Grants 17JC1401200,
and 18JC1415600, and 19YF1458500).
[11] a) Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q.
Hou, W. Qiao, K. Barman, M. A. Edwards, A. F. Garrido-Castro, J. N.
deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J.
T. Starr, C. Garcia-Irizarry, N. Sach, H. S. White, M. Neurock, S. D.
Minteer, P. S. Baran, J. Am. Chem. Soc. 2019, 141, 6392–6402; b) C.
Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D.
Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int. Ed.
2017, 56, 13088–13093; Angew. Chem. 2017, 129, 13268–13273; c) R.
Rahil, S. Sengmany, E. L. Gall, E. Léonel, Synthesis 2018, 50, 146–
154; d) S. Sengmany, A. Vitu-Thiebaud, E. L. Gall, S. Condon, E.
Léonel, C. Thobie-Gautier, M. Pipelier, J. Lebreton, D. Dubreuil, J. Org.
Chem. 2013, 78, 370–379; e) S. Sengmany, E. L. Gall, E. Léonel,
Molecules 2011, 16, 5550–5560; f) S. Sengmany, E. Léonel, F.
Polissaint, J.-Y. Nédélec, M. Pipelier, C. Thiobie-Gautier, D. Dubreuil, J.
Org. Chem. 2007, 72, 5631–5636; g) K. W. R. de França, M. Navarro,
É. Léonel, M. Durandetti, J.-Y. Nédélec, J. Org. Chem. 2002, 67, 1838–
1842; h) E. L. Gall, C. Gosmini, J.-Y. Nédélec, J. Périchon, Tetrahedron
Lett. 2001, 42, 267–269; i) C. Gosmini, S. Lasry, J.-Y. Nedelec, J.
Perichon, Tetrahedron 1998, 54, 1289–1298; j) Y. Rollin, M. Troupel, D.
G. Tuck, J. Perichon, J. Organometal. Chem. 1987, 333, 263–267; k) M.
Troupel, Y. Rollin, S. Sibille, J. F. Fauvarque, J. Perichon, J. Chem.
Res., Synop. 1980, 26–27; l) M. Mori, Y. Hashimoto, Y. Ban,
Tetrahedron Lett. 1980, 21, 631–634; m) S. K. Zhang, R. C. Samanta,
N. Sauermann, L. Ackermann. Chem. Eur. J. 2018, 24, 19166–19170.
[12] a) R. J. Perkins, D. J. Pedro, E. C. Hansen, Org. Lett. 2017, 19, 3755–
3758; b) R. J. Perkins, A. J. Hughes, D. J. Weix, E. C. Hansen, Org.
Process. Res. Dev. 2019, 23, 1746–1751.
Keywords: Organic electrochemistry • reductive relay cross-
coupling • nickel • 1,1-diarylalkanes
[1]
For selected reviews on Ni-catalyzed cross-coupling reactions to forge
C(sp2)–C(sp3) bonds, see: a) G. C. Fu, ACS Cent. Sci. 2017, 3, 692–
700; b) A. H. Cherney, N. T. Kadunce, S. E. Reisman, Chem. Rev.
2015, 115, 9587–9652; c) S. Z. Tasker, E. A. Standley, T. F. Jamison,
Nature 2014, 509, 299–309; d) R. Jana, T. P. Pathak, M. S. Sigman,
Chem. Rev. 2011, 111, 1417–1492; e) M. R. Netherton, G. C. Fu, Adv.
Synth. Catal. 2004, 346, 1525–1532.
[2]
For selected reviews on Ni-catalyzed reductive coupling of two
electrophiles, see a) D. J. Weix, Acc. Chem. Res. 2015, 48, 1767–
1775; b) D. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–
4798; c) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 2016, 374, 61–
89; d) J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2,
1411–1421; e) C. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C.
Gosmini, A. J. von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842; f) Y.
Li, Y. Fan, Q. Jia, Chin. J. Org. Chem. 2019, 39, 350–362.
[3]
[4]
D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132,
920–921.
a) E. C. Hansen, C. Li, S. Yang, D. Pedro, D. J. Weix, J. Org. Chem.
2017, 82, 7085–7092; b) E. C. Hansen, D. J. Pedro, A. C. Wotal, N. J.
Gower, J. D. Nelson, S. Caron, D. J. Weix, Nat. Chem. 2016, 8, 1126–
1130; c) X. Wang, S. Wang, W. Xue, H. Gong, J. Am. Chem. Soc. 2015,
137, 11562–11565; d) D. A. Everson, B. A. Jones, D. J. Weix, J. Am.
Chem. Soc. 2012, 134, 6146–6159; e) S. Wang, Q. Qian, H. Gong, Org.
Lett. 2012, 14, 3352–3355.
[13] For biological activity of 1,1-diarylalkanes, see: a) M. A. Soussi, O.
Provot, G. Bernadat, J. Bignon, D. Desravines, J. Dubois, J.-D. Brion, S.
Messaoudi, M. Alami, ChemMedChem 2015, 10, 1392–1402; b) A. V.
Cheltsov, M. Aoyagi, A. Aleshin, E. C.-W. Yu, T. Gilliland, D. Zhai, A. A.
Bobkov, J. C. Reed, R. C. Liddington, R. Abagyan, J. Med. Chem. 2010,
53, 3899–3906.
[5]
For selected examples on Ni-catalyzed asymmetric reductive coupling
of aryl halides with alkyl halides, see: a) K. E. Poremba, N. T. Kadunce,
N. Suzuki, A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2017, 139,
5684–5687; b) N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2015,
137, 10480–10483; For the example on Co-catalyzed asymmetric
reductive coupling of aryl halides with alkyl halides, see: c) L. K. G.
Ackerman, L. L. Anka-Lufford, M. Naodovic, D. J. Weix, Chem. Sci.
2015, 6, 1115–1119.
[14] a) D. Liu, H.-X. Ma, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed. 2019, 58,
5033–5037; Angew. Chem. 2019, 131, 5087–5091; b) K.-J. Jiao, Z.-M.
Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Org. Chem.
Front. 2018, 5, 2244–2248.
[15] Y.-G. Chen, B. Shuai, X.-T. Xu, Y.-Q. Li, Q.-L. Yang, H. Qiu, K. Zhang,
P. Fang, T.-S. Mei, J. Am. Chem. Soc. 2019, 141, 3395–3399.
[16] a) B. J. Stokes, S. M. Opra, M. S. Sigman, J. Am. Chem. Soc. 2012,
134, 11408–11411; b) B. J. Stokes, A. J. Bischoff, M. S. Sigman, Chem.
Sci. 2014, 5, 2336–2339.
[6]
a) A. García-Domínguez, Z. Li, C. Nevado, J. Am. Chem. Soc. 2017,
139, 6835–6838; b) N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E.
Reisman, Org. Lett. 2017, 19, 2150–2153; c) L. L. AnkaLufford, K. M. M.
Huihui, N. J. Gower, L. K. G. Ackerman, D. J. Weix, Chem. - Eur. J.
2016, 22, 11564–11567; d) H. Xu, C. Zhao, Q. Qian, W. Deng, H. Gong,
Chem. Sci. 2013, 4, 4022–4029.
[17] a) H. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci.
2018, 4, 153−165; b) A. Vassuer. J. Bruffaerts, I. Marek, Nat. Chem.
2016, 8, 209–219.
[7]
[8]
a) A. Paul, M. D. Smith, A. K. Vannucci, J. Org. Chem. 2017, 82, 1996–
2003; b) Z. Duan, W. Li, A. Lei, Org. Lett. 2016, 18, 4012–4015; c) P.
Zhang, C. Le, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138,
8084–8087.
[18] a) F. Zhou, Y. Zhang, X. Xu, S. Zhu, Angew. Chem. Int. Ed. 2019, 58,
1754–1758; Angew. Chem. 2019, 131, 1768–1772; b) W. Wang, C.
Ding, Y. Li, Z. Li, Y. Li, L. Peng, G. Yin, Angew. Chem. Int. Ed. 2019, 58,
4612–4616; Angew.Chem. 2019, 131, 4660–4664; c) S.-Z. Sun, M.
Börjesson, R. Martin-Montero, R. Martin, J. Am. Chem. Soc. 2018, 140,
a) N. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018,
8, 7086–7103; b) G. S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175–5187;
This article is protected by copyright. All rights reserved.