Published on Web 07/30/2004
Metal-Assisted Assembly of Pyridine-Containing Arylene
Ethynylene Strands to Enantiopure Double Helicates
Akihiro Orita,† Takehiro Nakano,† De Lie An,† Kazumi Tanikawa,†
Kan Wakamatsu,‡ and Junzo Otera*,†
Contribution from the Departments of Applied Chemistry and Chemistry,
Okayama UniVersity of Science, Ridai-cho, Okayama 700-0005, Japan
Received March 23, 2004; E-mail: otera@high.ous.ac.jp
Abstract: Pyridine-containing arylene ethynylene strands were connected to the 2- and 2′-positions of
(R)- and (S)-1,1′-binaphthyl templates. The arylene ethynylene moieties underwent intramolecular
coordination with Ag(I) or Cu(I) ion to afford enantiopure double helicates. The double-helical structure
was elucidated on the basis of circular dichroic (CD) spectra. The importance of intramolecular complexation
of the double strands for the helicate formation was confirmed by comparison with a ligand bearing a
single strand. Connection of the strands through an ether linkage enabled a sorting out of the Cotton effect
induced by double-helical arylene ethynylene moieties. The CD exciton chirality method unambiguously
proved that the termini of the strands approach each other upon complexation and that the sense of the
induced helicity is the same as predicted by molecular modeling.
Introduction
by the Cozzi/Siegel strategy. On the basis of molecular
modeling, pyridine was found to be a suitable donor unit due
Extensive attention has been paid to the self-assembly of
double helicates, some now available even in enantiomerically
pure form.1 Metal coordination chemistry has played a pivotal
role for this purpose since the pioneering work by Lehn et al.2
The most common way to arrive at homochiral helicates is to
introduce a chiral center into the backbone of the ligand strand.3
Spontaneous resolution is also effective on some occasions.4
Another strategy is to attach ligand strands to a chiral template
as developed by Cozzi and Siegel and co-workers.5 During a
project on arylene ethynylene chemistry, we reported the syn-
thesis of an enantiopure double-helical phenylene ethynylene
cyclophane.6 Consequently, we have become interested in
acyclic analogues because no such motif is known, in contrast
to extensive work on the relevant single helices.7 Inspection of
molecular models suggested to us that the double-helix arrange-
ment would be feasible if the strands with alternating ethynylene/
meta-arylene arrays were connected to the 2- and 2′-positions
of a 1,1′-binaphthalene template. However, preliminary experi-
ments soon revealed that no helical structures could be attained
by use of simple phenylene ethynylene chains due to the lack
of effective interactions between them. We were then intrigued
(3) (a) Libman, J.; Tor, Y.; Shanzer, A. J. Am. Chem. Soc. 1987, 109, 5880-
5881. (b) Shanzer, A.; Libman, J.; Lifson, S. Pure. Appl. Chem. 1992, 64,
1421-1435. (c) Koert, U.; Harding, M. M.; Lehn, J.-M. Nature 1990, 346,
339-342. (d) Zarges, W.; Hall, J.; Lehn, J.-M.; Bolm, C. HelV. Chim. Acta
1991, 74, 1843-1852. (e) Enemark, E. J.; Stack, T. D. P. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 996-998. (f) Constable, E. C.; Kulke, T.;
Neuburger, M.; Zehnder, M. Chem. Commun. 1997, 489-490. (g) Baum,
G.; Constable, E. C.; Fenske, D.; Kulke, T. Chem. Commun. 1997, 2043-
2044. (h) Baum, G.; Constable, E. C.; Fenske, D.; Housecroft, C. E.; Kulke,
T. Chem. Commun. 1998, 2659-2660. (i) Baum, G.; Constable, E. C.;
Fenske, D.; Housecroft, C. E.; Kulke, T. Chem. Eur. J. 1999, 5, 1862-
1873. (j) Baum, G.; Constable, E. C.; Fenske, D.; Housecroft, C. E.; Kulke,
T.; Neuburger, M.; Zehnder, M. J. Chem. Soc., Dalton Trans. 2000, 945-
959. (k) Bowyer, P. K.; Porter, K. A.; Rae, A. D.; Willis, A. C.; Wild, S.
B. Chem. Commun. 1998, 1153-1154. (l) Mu¨rner, H.; von Zelewsky, A.;
Hopfgartner, G. Inorg. Chim. Acta 1998, 271, 36-39. (m) Mamula, O.;
von Zelewsky, A.; Bernardinelli, G. Angew. Chem., Int. Ed. 1998, 37, 290-
293. (n) Mamula, O.; von Zelewsky, A.; Bark, T.; Bernardinelli, G. Angew.
Chem., Int. Ed. 1999, 38, 2945-2948. (o) Mamula, O.; Monlien, F. J.;
Porquet, A.; Hopfgartner, G.; Merbach, A. E.; von Zelewsky, A. Chem.
Eur. J. 2001, 7, 533-539. (p) Muller, G.; Bu¨nzli, J.-C. G.; Riehl, J. P.;
Suhr, D.; von Zelewsky, A.; Mu¨rner, H. Chem. Commun. 2002, 1522-
1523.
(4) (a) Kra¨mer, R.; Lehn, J.-M.; De Cian, A.; Fischer, J. Angew. Chem., Int.
Ed. Engl. 1993, 32, 703-706. (b) Kersting, B.; Meyer, M.; Powers, R. E.;
Raymond, K. N. J. Am. Chem. Soc. 1996, 118, 7221-7222.
(5) (a) Woods, C. R.; Benaglia, M.; Cozzi, F.; Siegel, J. S. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1830-1833. (b) Annunziata, A.; Benaglia, M.; Cinquini,
M.; Cozzi, F.; Woods, C. R.; Siegel, J. S. Eur. J. Org. Chem. 2001, 173-
180.
(6) (a) An, D. L.; Nakano, T.; Orita, A.; Otera, J. Angew. Chem., Int. Ed. 2002,
41, 171-173. (b) Orita, A.; An, D. L.; Nakano, T.; Yaruva, J.; Ma, N.;
Otera, J. Chem. Eur. J. 2002, 8, 2005-2010.
† Department of Applied Chemistry.
‡ Department of Chemistry.
(1) For some representative reviews: (a) Lehn, J.-M. Supramolecular Chem-
istry, VCH: Weinheim, Germany, 1995. (b) Lehn, J.-M. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 89-112. (c) Lehn, J.-M. Angew. Chem., Int. Ed.
Engl. 1990, 29, 1304-1319. (d) Lindsey, J. S. New J. Chem. 1991, 15,
153-180. (e) Constable, E. C. Tetrahedron 1992, 48, 10013-10059. (f)
Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997, 97, 2005-
2062. (g) Albrecht, M. Chem. Soc. ReV. 1998, 27, 281-287. (h) Albrecht,
M. Chem. Eur. J. 2000, 6, 3485-3489. (i) Holliday, B. J.; Mirkin, C. A.
Angew. Chem., Int. Ed. 2001, 40, 2022-2043. (j) Hill, D. J.; Mio, M. J.;
Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101, 3893-
4011.
(7) For the most recent papers: (a) Cary, J. M.; Moore, J. S. Org. Lett. 2002,
4, 4663-4666. (b) Matsuda, K.; Stone, M. T.; Moore, J. S. J. Am. Chem.
Soc. 2002, 124, 11836-11837. (c) Zhao, D.; Moore, J. S. J. Am. Chem.
Soc. 2002, 124, 9996-9997. (d) Ku¨bel, C.; Mio, M. J.; Moore, J. S. J.
Am. Chem. Soc. 2002, 124, 8605-8610. (e) Nishinaga, T.; Tanatani, A.;
Oh, K.; Moore, J. S. J. Am. Chem. Soc. 2002, 124, 5934-5935. (f) Zhao,
D.; Moore, J. S. J. Org. Chem. 2002, 67, 3548-3554. (g) Tanatani, A.;
Hughes, T. S.; Moore, J. S. Angew. Chem., Int. Ed. 2002, 41, 325-328.
(h) Ma, L.; Hu, Q.-S.; Vithrana, D.; Wu, C.; Kwan, C. M. S.; Pu, L.
Macromolecules 1997, 30, 204-218. (i) Le´re-Porte, J.-P.; Moreau, J. J.
E.; Serein-Spiran, F.; Nakim, S. Chem. Commun. 2002, 3020-3021. (j)
Prince, R. B.; Okada, T.; Moore, J. S. Angew. Chem., Int. Ed. 1999, 38,
233-236.
(2) Lehn, J.-M.; Rigault, A.; Siegel, J. S.; Harrowfield, J.; Chevrier, B.; Moras,
D. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2565-2569.
9
10.1021/ja048327d CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 10389-10396
10389