azabutadienyl metallacycle 2a, via allenylidene–iminophosphorane
coupling and mesitylene–phenyl ring exchange (Scheme 2).
The allenylidene complex 5 could be isolated in 79% yield,‡ and
its structure was confirmed unequivocally by X-ray crystallography
(Fig. 3).¶
This work was supported by the Ministerio de Ciencia y
Tecnología (MCyT) of Spain (Project BQU2003–00255). V.C.
thanks the MCyT for the award of a Ramón y Cajal contract.
Notes and references
Although the overall mechanism for this coupling reaction is still
unknown it seems that the first step, in which the –Ph2PNN–RF unit
is added to the allenylidene chain, depends on the electrophilicity of
the Ca atom of the allenylidene ligand. This could explain the
observed slower reaction rate in the transformation of the more
electron-rich mesitylene vs the p-cymene complex (3 vs 1a),
allowing the isolation of allenylidene 5 in which the electrophilicity
of the a-carbon is clearly reduced. In accord with this, the
analogous hexamethylbenzene complex 6‡ (Scheme 2) remains
unchanged under similar reaction conditions. It should be noted
that, although the addition of X–H (X = O, N, S, P) bonds to the
CaNCb of transition-metal allenylidenes is a well-established
transformation which generally yields Fischer-type a,b-unsat-
urated carbenes2 or in some cases azoniabutadienyl species (X =
N),8 no X–C bond additions to allenylidene chains have been
reported to date. This reaction pathway constitutes a novel example
of the usefulness of transition-metal allenylidene complexes as
building blocks for the preparation of unusual organometallic
skeletons.
‡ Compounds 1c–d, 2a–d, 5 and 6 have been characterized by NMR
spectroscopy and elemental analyses. See ESI.
§ Crystal data for 2d: RuC48H32F9N3P2ClSb, M = 1141.98, orange prism
(0.125 3 0.075 3 0.025 mm), monoclinic, C2/c, a = 39.587(7) Å, b =
12.430(2) Å, c = 20.522(4) Å, a = 90°, b = 117.306(7)°, g = 90°, V =
8973(3) Å3, Z = 8, Dcalc = 1.691 g cm23, m(Cu-Ka) = 9.392 mm21
,
Nonius Kappa CCD diffractometer, Cu–Ka radiation (l = 1.54184 Å).
54554 reflections collected, 5843 unique (Rint = 0.095). R1 = 0.0603; wR2
suppdata/cc/b4/b404971c/ for crystallographic files in .cif format.
¶ Crystal data for 5: RuC54H44F10N2P2ClSb, M = 1231.12, violet prism
(0.25 3 0.25 3 0.10 mm), monoclinic, P21/a, a = 16.4727(16) Å, b =
17.1842(17) Å, c = 20.571(2) Å, a = 90°, b = 112.879(2)°, g = 90°, V =
5364.9(3) Å3, Z = 4, Dcalc = 1.524 g cm23, m(Mo–Ka) = 0.966 mm21
,
Bruker Smart CCD diffractometer, Mo–Ka radiation (l = 0.71073 Å).
43447 reflections collected, 16052 unique (Rint = 0.1035). R1 = 0.0728;
suppdata/cc/b4/b404971c/ for crystallographic files in .cif format.
1 J. P. Selegue, Organometallics, 1982, 1, 217.
2 M. I. Bruce, Chem. Rev., 1998, 98, 2797; V. Cadierno, M. P. Gamasa
and J. Gimeno, Eur. J. Inorg. Chem., 2001, 571.
6
1
1
In summary, a readily accessible route to unprecedented h :h :h
tethered-arene–ruthenium(II) complexes, in which the pendant
arms involve both P and C donor atoms, is described. The chemistry
of transition-metal complexes containing tethered-type ligands is
growing rapidly because of their potential contribution to the
configurational stability around the metal centre, and for promoting
selective stoichiometric and catalytic transformations.6,10 Further
studies concerning the scope and mechanism of this coupling
process, as well as reactivity studies on the new type of tethered-
arene–ruthenium(II) complexes 2, are now under active investiga-
tion.
3 Ruthenium(II
) allenylidene complexes have shown to be active
precatalysts in: (a) ROMP: R. Castarlenas and P. H. Dixneuf, Angew.
Chem., Int. Ed., 2003, 42, 4524; (b) RCM: M. Bassetti, F. Centola, D.
Sémeril, C. Bruneau and P. H. Dixneuf, Organometallics, 2003, 22,
4459; (c) Dimerization of tin hydrides: S. M. Maddock and M. G. Finn,
Angew. Chem., Int. Ed., 2001, 40, 2138; (d) Propargylic substitutions:
Y. Nishibayashi, H. Imajima, G. Onodera, M. Hidai and S. Uemura,
Organometallics, 2004, 23, 26; (e) Allenylidene–ene reactions: Y.
Nishibayashi, Y. Inada, M. Hidai and S. Uemura, J. Am. Chem. Soc.,
2003, 125, 6060; (f) Cycloaddition reactions: Y. Nishibayashi, Y. Inada,
M. Hidai and S. Uemura, J. Am. Chem. Soc., 2002, 124, 7900.
4 T. Naota, H. Takaya and S.-I. Murahashi, Chem. Rev., 1998, 98, 2599;
B. M. Trost, F. D. Toste and A. B. Pinkerton, Chem. Rev., 2001, 101,
2067; V. Ritleng, C. Stirling and M. Pfeffer, Chem. Rev., 2002, 102,
1731.
5 V. Cadierno, S. Conejero, M. P. Gamasa and J. Gimeno, Dalton Trans.,
2003, 3060 and references therein.
6
6 Tethered (h -arene)–Ru(II) complexes containing pendant N,N- and
N,O-donor arms have been recently reported: J. Hannedouche, G. J.
Clarkson and M. Wills, J. Am. Chem. Soc., 2004, 126, 986.
7 We have described the synthesis and hemilabile behaviour of complexes
1a–b and 3–4: V. Cadierno, J. Díez, S. E. García-Garrido, S. García-
Granda and J. Gimeno, J. Chem. Soc., Dalton Trans., 2002, 1465; V.
Cadierno, P. Crochet, J. García-Álvarez, S. E. García-Garrido and J.
Gimeno, J. Organomet. Chem., 2002, 663, 32.
Scheme 2 RF = p-C5F4N. Reagents and conditions: i, HC·CC(OH)Ph2 (10
equiv.), CH2Cl2, rt; ii, R = H, CH2Cl2, rt, 10 days.
8 Only
the
azabutadienyl–ruthenium(II
)
derivatives
5
[Ru{C(CHNCPh2)NNR}(h -C5H5)(CO)(PiPr3)] (R
=
Ph, nPr,
CH2C·CH), obtained by deprotonation of the corresponding azoniabu-
tadienyl
5
species
[Ru{C(CHNCPh2)NNHR}(h -C5H5)(CO-
)(PiPr3)][BF4], are known: (a) D. J. Bernad, M. A. Esteruelas, A. M.
López, J. Modrego, M. C. Puerta and P. Valerga, Organometallics,
1999, 18, 4995; (b) M. L. Buil, M. A. Esteruelas, A. M. López and E.
Oñate, Organometallics, 2003, 22, 162.
9 The P(1)–N(1) distance (1.638(6) Å) shows also the expected value for
a P–N single bond. See for example: F. H. Allen, O. Kennard, D. G.
Watson, A. G. Orpen, L. Brammer and R. Taylor, J. Chem. Soc., Perkin
Trans. 2, 1987, S1. These structural parameters seem to rule out any
important contribution from the carbenic resonance form:
Fig. 3 Molecular structure of 5. SbF62 anion, hydrogen atoms and phenyl
groups of the P,N-ligand have been omitted. Selected bond distances (Å)
and angles (°): Ru–Cl(1) 2.3887(17); Ru–P(1) 2.3237(18); Ru–C(1)
1.896(7); C(1)–C(2) 1.242(9); C(2)–C(3) 1.366(10); P(1)–C(37) 1.842(6);
C(37)–P(2) 1.814(6); P(2)–N(1) 1.560(6); N(1)–C(50) 1.379(9); C(1)–Ru–
P(1) 86.0(2); C(1)–Ru–Cl(1) 88.4(2); P(1)–Ru–Cl(1) 89.37(6); Ru–C(1)–
C(2) 178.7(6); C(1)–C(2)–C(3) 176.6(8).
10 See for example: H. Butenschon, Chem. Rev., 2000, 100, 1527; J. W.
Faller and D. G. D’Alliessi, Organometallics, 2003, 22, 2749; B.
Çetinkaya, S. Demir, I. Özdemir, L. Toupet, D. Sémeril, C. Bruneau and
P. H. Dixneuf, Chem. Eur. J., 2003, 9, 2323.
C h e m . C o m m u n . , 2 0 0 4 , 1 8 2 0 – 1 8 2 1
1821