Page 5 of 7
Crystal Growth & Design
Yanez, J. A.; Andrews, P. K.; Davies, N. M. Methods of analysis
and separation of chiral flavonoids. J. Chromatogr. B, 2007, 848,
159–181.
Biddle, M. M.; Lin, M.; Scheidt, K. A. Catalytic enantioselective
synthesis of flavanones and chromanones. J. Am. Chem. Soc.,
2007, 129, 3830–3831.
1
2
3
4
5
6
7
8
Oyama, K.; Kondo, T. Total Synthesis of Flavocommelin, a Com-
ponent of the Blue Supramolecular Pigment from Commelina
communis, on the Basis of Direct 6-C-Glycosylation of Flavan. J.
Org. Chem. 2004, 69, 5240–5246.
Tian, G.; Zhang, U.; Zhang, T.; Yang, F.; Ito, Y. Separation of fla-
vonoids from the seeds of Vernonia anthelmintica Willd by
high-speed counter-current chromatography. J. Chromatogr.
A., 2004, 1049, 219–222.
Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. Asymmetric intramo-
lecular oxa-Michael addition of activated alpha,beta-unsatu-
rated ketones catalyzed by a chiral N,N′-dioxide nickel(II) com-
plex: highly enantioselective synthesis of flavanones. Angew.
Chem. Int. Ed. 2008, 47, 8670–8673.
McDonald, B. R.; Nibbs, A. E.; Scheidt, K. A. A biomimetic strat-
egy to access the silybins: total synthesis of (-)-isosilybin A. Org.
Lett., 2015, 17, 98–101.
9
Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G.
Evaluation of bioactive flavonoids and antioxidant activity in
Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during
storage. Food Chem., 2017, 230, 649–656.
Ley, J. P.; Krammer G.; Reinders G.; Gatfield I. L.; Bertram H. J.;
Evaluation of bitter masking flavanones from Herba Santa (Eri-
odictyon californicum (H. and A.) Torr., Hydrophyllaceae). J.
Agric. Food. Chem., 2005, 53, 6061–6066;
Ishikawa, T. Anti HIV-1 Active Calophyllum Coumarins: Distri-
bution, Chemistry, and Activity. Heterocycles, 2000, 53, 453–
474.
Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63,
1035-1042.
Na, M.; Jang, J.; Njamen, D.; Mbafor, J. T.; Fomum, Z. T.; Kim, B.
Y.; Oh, W. K.; Ahn, J. S. Protein tyrosine phosphatase-1B inhib-
itory activity of isoprenylated flavonoids isolated from
Erythrina mildbraedii. J. Nat. Prod., 2006, 69, 1572–1576.
Farmer, R. L.; Biddle, M. M.; Nibbs, A. E.; Huang, X.; Bergan, R.
C.; Scheidt, K. A. Concise Syntheses of the Abyssinones and Dis-
covery of New Inhibitors of Prostate Cancer and MMP-2 Ex-
pression. Med. Chem. Lett. 2010, 1, 400–405.
Lowe, H. I. C.; Toyang, N. J.; Watson, C. T.; Ayeah, K. N.; Bryant,
J. HLBT-100: A Highly Potent Anti-Cancer Flavanone From Til-
landsia recurvata (L.) L. Cancer Cell Int. 2017, 17, 38.
Shi, W.; Liu, L.; Li, J.; Qu, L.; Pang, X.; Yu, H.; Zhang, Y.; Wang, T.
Dittmer, C.; Raabe, G.; Hintermann, L. Asymmetric Cyclization
of 2’-Hydroxychalcones to Flavanones: Catalysis by Chiral
Bronsted Acids and Bases. Eur. J. Org. Chem. 2007, 5886–5898.
Fuhr, U.; Klittich, K.; Staib, A. H. Inhibitory effect of grapefruit
juice and its bitter principal, naringenin, on CYP1A2 dependent
metabolism of caffeine in man, Br. J. Clin. Pharmac. 1993, 35,
431–436.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Gao, S.; Lyu, Y.; Zeng, W.; Du, G.; Zhou, J.; Chen, J. Efficient Bi-
osynthesis of (2S)‑Naringenin from p‑Coumaric Acid in Saccha-
romyces cerevisiae. J. Agric. Food Chem. 2020, 68, 1015–1021.
stances. Biochim. Biophys. Acta 1954, 13, 171–174.
Frank, F. C. On Spontaneous Asymmetric Synthesis. Biochim.
Biophys. Acta 1953, 11, 459–463.
Yagishita, F.; Ishikawa, H.; Onuki, T.; Hachiya, S.; Mino, T.; Sa-
kamoto, M. Total Spontaneous Resolution by Deracemization
of Isoindolinones, Angew. Chem. Int. Ed., 2012, 51, 13023–
13025.
Hachiya, S.; Kasashima, Y.; Yagishita, F.; Mino, T.; Masu, H.; Sa-
kamoto, M. Asymmetric transformation by dynamic crystalliza-
tion of achiral succinimides. Chem. Commun. 2013, 49, 4776–
4778.
Sakamoto, M.; Shiratsuki, K.; Uemura, N.; Ishikawa, H.; Yoshida,
Y.; Kasashima, Y.; Mino, T. Asymmetric synthesis by using nat-
ural sunlight under absolute achiral conditions. Chem. Eur. J.
2017, 23, 1717–1721.
Kawasaki, T.; Takamatsu, N.; Aiba, S.; Tokunaga, Y. Spontane-
ous formation and amplification of an enantioenriched α-
amino nitrile: a chiral precursor for Strecker amino acid synthe-
sis. Chem. Commun., 2015, 51, 14377–14380.
Tsogoeva, S. B.; Wei, S.; Freund, M.; Mauksch, M. Deracemiza-
tion with reversible Mannich type reaction. Angew. Chem. Int.
Ed., 2009, 48, 590–594.
Flock, A. M.; Reucher, C. M. M.; Bolm, C. Enantioenrichment by
Iterative Retro-Aldol/Aldol Reaction Catalyzed by an Achiral or
Racemic Base. Chem. Eur. J. 2010, 16, 3918–3921.
Uemura, N.; Toyoda, S.; Ishikawa, H.; Yoshida, Y.; Mino, T.
Kasashima, Y.; Sakamoto, M. Asymmetric Diels–Alder Reaction
Involving Dynamic Enantioselective Crystallization. J. Org.
Chem. 2018, 83, 9300–9304.
Bioactive Flavonoids From Flos Sophorae. J. Nat. Med., 2017
,
71, 513–522.
Wang, S.; Cao, M.; Xu, S.; Zhang, J.; Wang, Z.; Mao, X.; Yao, X.;
Liu, C. Effect of luteolin on inflammatory responses in
RAW264.7 macrophages activated with LPS and IFN-γ. J. Funct.
Foods 2017, 32, 123–130.
Meng, L.; Wang, J. J. Recent progress on asymmetric synthesis
of chiral flavanones, chromones, and chromenes. in Advances
in Organic Synthesis, 2018, 11, 1–42.
Gao, M.; Meng, J.-J.; Lv, H.; Zhang, X. Highly regio- and enanti-
oselective synthesis of γ,δ-unsaturated amido esters by cata-
lytic hydrogenation of conjugated enamides. Angew. Chem. Int.
Ed. 2015, 54, 1885–1887.
Zhao, D.; Beiring, B.; Glorius, F. Ruthenium-NHC-catalyzed
asymmetric hydrogenation of flavones and chromones: gen-
eral access to enantiomerically enriched flavanones, flavanols,
chromanones, and chromanols. Angew. Chem. Int. Ed. 2013, 52,
8454–8458.
Lemke, M. K.; Schwab, P.; Fischer, P.; Tischer, S.; Witt, M.;
Noehringer, L.; Rogachev, V.; Jäger, A.; Kataeva, O.; Fröhlich,
R.; Metz, P. A practical access to highly enantiomerically pure
flavanones by catalytic asymmetric transfer hydrogenation.
Angew. Chem. Int. Ed. 2013, 52, 11651–11655.
Uemura, N.; Toyoda, S.; Shimizu W., Yoshida, Y.; Mino, T.; Sa-
kamoto, M. Absolute Asymmetric Synthesis Involving Chiral
Symmetry Breaking in Diels–Alder Reaction. Symmetry 2020
12, 910.
,
Steendam, R. R. E.; Verkade, J. M. M.; van Benthem, T. J. B.;
Meekes, H.; van Enckevort, W. J. P.; Raap, J.; Rutjes, F. P. J. T.;
Vlieg, E. Emergence of single-molecular chirality from achiral
reactants, Nature Commun. 2014, 5, 5543–5550.
Kaji, Y.; Uemura, N.; Kasashima, Y.; Ishikawa, H.; Yoshida, Y.;
Mino, T.; Sakamoto, M. Asymmetric Synthesis of an Amino Acid
Derivative from Achiral Aroyl Acrylamide by Reversible Michael
Addition and Preferential Crystallization. Chem. Eur. J. 2016, 22,
16429–16432.
Uemura, N.; Sano, K.; Matsumoto, A.; Yoshida, Y.; Mino, T.; Sa-
kamoto, M. Asymmetric Synthesis of Aspartic Acid Derivative
from Prochiral Maleic Acid and Pyridine under Achiral Condi-
tions. Chem. Asian J. 2019, 14, 4150–4153.
Crystal data was deposited to The Cambridge Crystallographic
Data Centre (4a: CCDC 2006511, 4b: CCDC 1988302, 4c: CCDC
2006512, 4d: CCDC 1988303, 4e: CCDC 1988304, 4f: CCDC
Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Highly enantiose-
lective Cu-catalyzed conjugate additions of dialkylzinc reagents
to unsaturated furanones and pyranones: preparation of air-
stable and catalytically active Cu-peptide complexes. Angew.
Chem. Int. Ed. 2005, 44, 5306-5310.
Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi,
T. Sodium tetraarylborates as effective nucleophiles in rho-
dium/diene-catalyzed 1,4-addition to β,β-disubstituted α,β
-
unsaturated ketones: catalytic asymmetric construction of
quaternary carbon stereocenters. J. Am. Chem. Soc., 2009, 131,
13588–13589.
ACS Paragon Plus Environment