C O M M U N I C A T I O N S
Scheme 2
25 to HNTf2 gave the expected cyclohexenones 29 and 23 in good
yields (entries 1 and 2). Cyclizations of trisubstituted and mono-
substituted alkenes were promoted more efficiently using MsOH
(entries 3-5). We are continuing our search for a catalytic protocol
to promote the siloxy enyne cyclizations.
In closing, we have developed efficient acid-promoted carbo-
cyclizations of siloxyalkynes to give a range of substituted
tetralones and cyclohexenones. The most notable aspect of this
process is the ability to efficiently generate highly reactive ke-
tenium ions that are readily intercepted by nucleophiles that are
not restricted to those containing electron-rich arenes and allyl
silanes.
electrophilic aromatic substitution mechanism (Scheme 2). An
alternative mechanism involving a [3,3]-sigmatropic rearrangement
of intermediate A, followed by 6π-electrocyclic ring closure, would
result in formation of racemic 19. The key feature of the reaction
is generation of a highly reactive ketenium ion A upon protonation
of siloxyalkyne. We believe that the low nucleophilicity of the
Acknowledgment. We thank Randy Sweis and Michael Schramm
for their initial contributions to this investigation. S.A.K. is a fellow
of the Alfred P. Sloan Foundation. S.A.K. thanks the Dreyfus
Foundation for the Teacher-Scholar Award and Amgen, Inc., for
the New Investigator’s Award.
-
NTf2 anion is crucial for enabling the formation and effective
interception of A to give a σ-complex B, which affords the final
product with concomitant regeneration of the acid catalyst.
Encouraged by the ability of HNTf2 to promote efficient arene-
siloxyalkyne carbocyclizations, we next examined the corresponding
enyne cyclizations. Indeed, subjection of siloxy enyne 22 to HNTf2
afforded enone 23 (Scheme 3). Our systematic studies revealed that
Supporting Information Available: Full characterization of new
compounds and selected experimental procedures (PDF). This material
Scheme 3
References
(1) For representative examples, see: (a) Imamura, K.; Yoshikawa, E.;
Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 5339. (b)
Fernandes-Rivas, C.; Mendez, M.; Echavarren, A. M. J. Am. Chem. Soc.
2000, 122, 1221. (c) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org.
Chem. 2000, 65, 4913. (d) Asao, N.; Shimada, T.; Shimada, T.; Yamamoto,
Y. J. Am. Chem. Soc. 2001, 123, 10899. (e) Inoue, H.; Chatani, N.; Murai,
S. J. Org. Chem. 2002, 67, 1414. (f) Fu¨rstner, A.; Mamune, V. J. Org.
Chem. 2002, 67, 6264. (g) Pastine, S. J.; Youn, S. W.; Sames, D. Org.
Lett. 2003, 5, 1055. (h) Nishizawa, M.; Takao, H.; Yadav, V. K.; Imagawa,
H.; Sugihara, T. Org. Lett. 2003, 5, 4563.
(2) For representative Brønsted acid-mediated enyne cyclizations, see: (a)
Johnson, W. S.; Gravestock, M. B.; Parry, R. J.; Myers, R. F.; Bryson, T.
A.; Miles, D. H. J. Am. Chem. Soc. 1971, 93, 4330. (b) Fu¨rtsner, A.;
Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120,
8305.
a stoichiometric amount of acid is required for efficient carbocy-
clization of 22. Under optimized conditions, cyclohexenone 23 was
obtained in 74% yield using 120 mol % HNTf2.
Our investigation of the scope of enyne carbocyclizations is
summarized in Table 3. Subjection of disubstituted alkenes 24 and
(3) For our studies on the reactivity of siloxyalkynes, see: (a) Schramm, M.
P.; Reddy, D. S.; Kozmin, S. A. Angew. Chem., Int. Ed. 2001, 40, 4274.
(b) Sweis, R. F.; Schramm, M. P.; Kozmin, S. A. J. Am. Chem. Soc. 2004,
126, 7442. (c) Reddy, D. S.; Kozmin, S. A. J. Org. Chem. 2004, 69,
4860.
Table 3. Alkene-Siloxyalkyne Carbocyclizations
(4) For a recent review of ynolates, see: Shindo, M. Synthesis. 2003,
2275.
(5) (a) Staudinger, H. Die Ketene; Verlag Enke: Stuttgart, 1912. (b) Tidwell,
T. T. Ketenes; John Wiley & Sons, Inc.: New York, 1995. (c) Chemistry
of Ketenes, Allenes and Related Compounds; Patar, S., Ed.; John Wiley
& Sons: New York, 1980.
(6) (a) Hegmann, J.; Ditterich, E.; Hu¨ttner, G.; Christl, M.; Peters, E.; Peters,
K.; Vor Schnering, H. G. Chem. Ber. 1992, 125, 1913. (b) Uhlig, W.;
Tzschach, A. Z. Chem. 1988, 28, 409. Also see ref 4b.
(7) For â-functionalization of alkoxy alkynes to give ketenes, see: (a)
Ponomarev, S. C. Angew. Chem, Int. Ed. Engl. 1973, 12, 675. (b)
Danishefsky, S.; Kitahara, T.; Tsai, M.; Dynak, J. J. Org. Chem. 1976,
41, 1669. (c) Sakurai, H.; Shirahata, A.; Sasaki, K.; Hosomi, A. Syn-
thesis 1979, 740. (d) Himbert, G.; Henn, L. Tetrahedron Lett. 1984, 25,
1357.
(8) Siloxyalkynes utilized in this study were prepared by the following
method: Julia, M. Saint-Jalmes, V. P.; Verpeaux, J. N. Synlett 1993,
233.
(9) For HNTf2-promoted reactions, see: (a) Foropoulus, J.; DesMarteau, D.
D. Inorg. Chem. 1984, 23, 3720. (b) Kuhnert, N.; Peverley, J.; Roberston,
J. Tetrahedron Lett. 1998, 39, 3215. (c) Ishihara, K.; Hiraiwa, Y.;
Yamamoto, H. Synlett 2001, 1851. (d) Cossy, J.; Lutz, F.; Alauze, V.;
Meyer, C. Synlett 2002, 45.
(10) For a recent discussion of acid strength of HNTf2, see: Thomazeau, C.;
Bourbigou, H. O.; Magna, L.; Luts, S.; Gilbert, B. J. Am. Chem. Soc.
2003, 125, 5264 and references therein.
(11) For complete details, see Supporting Information.
a Method A: HNTf2 (120 mol %), CH2Cl2, 20 °C, 2 h. b Method B:
MsOH (4 equiv), CH2Cl2, 20 °C, 2 h. c Yield was determined by 1H NMR
using 1,2-dibromobenzene as an internal standard.
JA046586X
9
J. AM. CHEM. SOC. VOL. 126, NO. 33, 2004 10205