J. X. Qiao et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5041–5048
5047
plots of the observed rate constants versus inhibitor
were linear up to 5000 nM. Dissociation rate constants
could thus be calculated from the relationship,
Ki = kdissoc/kassoc, and account for the higher Ki’s at
37 ꢁC. These results are similar to those obtained with
both razaxaban and apixaban.13
A. Barbera, Tracy A. Bozarth, and Karen S. Hartl for
in vitro assays.
References and notes
1. Presented in part at the 232nd ACS National Meeting San
Francisco, CA, September 10–14, 2006, MEDI-393.
2. For review papers of FXa inhibitors, see: (a) Quan, M.;
Smallheer, J. Curr. Opin. Drug Disc. Dev. 2004, 7, 460; (b)
Walenga, J. M.; Jeske, W. P.; Hoppensteadt, D.; Fareed,
J. Curr. Opin. Invest. Drugs 2003, 4, 272; (c) Gould, W. R.;
Leadley, R. J. Curr. Pharm. Design 2003, 9, 2337; (d)
Quan, M. L.; Wexler, R. R. Curr. Top. Med. Chem.
(Hilversum, Netherlands) 2001, 1, 137.
3. (a) Lassen, M. R.; Davidson, B. L.; Gallus, A.; Pineo, G.;
Ansell, J.; Deitchman, D. Blood 2003, 102, 11; (b) Straub,
A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlem-
mer, K.-H.; Reinemer, P.; Perzborn, E.; Roehrig, S. J.
Med. Chem. 2005, 48, 5900; (c) Eriksson, B. L.; Borris, L.;
Dahl, O. E.; Haas, S.; Huisman, M. V.; Kakkar, A. K. J.
Thromb. Haemost. 2006, 4, 121; (d) Hampton, T. JAMA
2006, 295, 743; (e) Wong, P. C.; Crain, E. J.; Watson, C.
A.; Zaspel, A. M.; Wright, M. R.; Lam, P. Y. S.; Pinto, D.
J.; Wexler, R. R.; Knabb, R. M. J. Pharmacol. Exp. Ther.
2002, 303, 993.
Scheme 1 illustrates the synthesis of enantiopure diamin-
oindane derivatives using 8 as an example following the
similar sequence as that for compounds 1.6
The synthetic route for enantiopure cis-3,4-diamino-
pyrrolidine core is outlined in Scheme 2 using the prep-
aration of compound 31 as an example. The 12-step
synthesis involved two key reactions. One is the synthe-
sis of the Fmoc protected hydroxylazide pyrrolidine 48
via stereospecific ring opening of the meso epoxide with
TMS azide catalyzed by Jacobsen’s chiral (salen)chro-
mium(III) catalyst 47.18 The Fmoc group was chosen
as the amino protecting group because it allows high
ee and easy monitoring of the reaction progress. The
other key transformation is from the trans Boc-pro-
tected amino alcohol 49 to the cis Boc-protected azide
50. Normal azide formation via sodium azide displace-
ment of the corresponding mesylate in either DMF or
DMSO at either room temperature or elevated temper-
ature to 80 ꢁC generated undesirable products, presum-
ably due to the initial Fmoc decomposition followed by
other reactions. However, treatment of alcohol 49 with a
freshly prepared HN3 toluene solution under Mitsunobu
condition led to the desired cis Boc-protected amino
azide 50. Reduction of the crude azide 50, and then
coupling the resulting amine with 4-(2-oxopyridin-
1(2H)-yl)benzoic acid, followed by deprotection and a
subsequent amide formation with 3-chloro-1H-indole-
6-carboxylic acid afforded the Fmoc protected diamino-
pyrrolidine 51. Deprotection of Fmoc group followed by
carbamate formation provided compound 31. Using
similar strategies, the tetrahydrofuranyldiamides 23
and 24 were also prepared with an ee >97% measured
by chiral analytical HPLC.
4. Quan, M. L.; Lam, P. Y. S.; Han, Q.; Pinto, D. J.; He, M.;
Li, R.; Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J. H.;
Alexander, R. S.; Bai, S. A.; Luettgen, J. M.; Knabb, R.
M.; Wong, P. C.; Wexler, R. R. J. Med. Chem. 2005, 48,
1729.
5. Pinto, D. J. P.; Orwat, M. J.; Koch, S.; Rossi, K. A.;
Alexander, R. S.; Smallwood, A.; Wong, P. C.; Rendina,
R. A.; Luettgen, J. M.; Knabb, R. M.; He, K.; Xin, B.;
Wexler R.R.; Lam, P.Y.S. J. Med. Chem. in press.
6. Qiao, J. X.; Chang, C.-H.; Cheney, D. L.; Morin, P. E.;
King, S. R.; Wang, G. Z.; Wang, T. C.; Rendina, A. R.;
Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.; Lam, P. Y. S.
7. Pinto, D.; Quan, M.; Orwat, M.; Li, Y.; Han, W.; Qiao, J.;
Lam, P.; Koch, S. PCT Int. Appl. WO 03026652 A1, 2003.
8. PyMol. DeLano, W. L. The PyMOL Molecular Graphics
9. (a) Knabb, R. M.; Kettner, C. A.; Timmermans, P. B. M.
W. M.; Reilly, T. M. Thromb. Haemost. 1992, 67, 56; (b)
Kettner, C. A.; Mersinger, L. J.; Knabb, R. M. J. Biol.
Chem. 1990, 265, 18289.
10. Structures 6 and 8 were docked into a representative, in-
house crystal structure of FXa using GLIDE XP with
refinement using the OPLS-AA force-field and SGB
continuum model in the IMPACT module in Maestro.
Maestro, version 6.0, Schro¨dinger, LLC, New York, NY,
2005.
11. Structures of compounds 11, 13, and 31 were docked with
GLIDE XP version 4.0 into a conformationally represen-
tative ensemble of crystal structures of the FXa binding
site. Top-scoring poses were further refined using the MM-
GBSA routine in Maestro in combination with manual
modeling. Maestro, version 7.5, Schro¨dinger, LLC, New
York, NY, 2005. For protein ensemble docking see:
Cheney, D. L.; Mueller, L. Abstracts of Papers, 229th
ACS National Meeting, San Diego, CA, United States,
March 13–17, 2005, COMP-307.
In summary, to improve the metabolic stability of the
cyclopentyldiamine derivative 1 while maintaining the
sub-nanomolar FXa potency, we synthesized several
enantiopure five-membered cyclicdiamine series: the
4-substituted cyclopentyldiamine, the tetrahydrofura-
nyl-diamine, and the pyrrolidinyldiamine derivatives.
Compared with 1, those compounds having a similarly
high FXa potency had an improved metabolic stability
in HLM (90–100% remaining after 10 min). The tetrahy-
drofuranyldiamide 23 had an improved bioavailability
in dogs. The ethyl carbamate 31 in the (3R,4S)-pyr-
rolidinyldiamine series, having excellent potency and
selectivity, and an HLM stability better than 1, was
the best overall compound with a bioavailability of
25% and a t1/2 of 2.7 h in dogs.
Acknowledgments
12. For general descriptions regarding assays for Cyp P450,
cytotoxicity, and hERG, please see: (a) Crespi, C. L.;
Miller, V. P.; Penman, B. W. Anal. Biochem. 1997, 248,
188; (b) Graham, F. L.; Smiley, J.; Russell, W. C.; Nairn,
The authors thank Mary F. Grubb for metabolic ID
study of compound 1, and Jeffrey M. Bozarth, Frank