D. J. Bougioukou, I. Smonou / Tetrahedron Letters 43 (2002) 339–342
341
Scheme 6.
When the C4ꢀC5 double bond has the Z configuration,
as in substrates 3 and 4, enantioselective epoxidation
competes well with allylic oxidation, to give the epox-
ides 9 and 10 and the allylic aldehydes 8 and 5 in
comparable amounts. It is worth pointing out again the
high enantiomeric purity of the epoxides 9 (96% ee) and
10 (93% ee) which are of the highest observed in such
reactions.
5. van Deurzen, M. P. J.; van Rantwijk, F.; Sheldon, R. A.
Tetrahedron 1997, 53, 13183–13220.
6. Colonna, S.; Gaggero, C.; Richelmi, C.; Pasta, P.
TIBTECH 1999, 17, 163.
7. Miller, V. P.; Tschirret-Guth, R. A.; Ortiz de Montel-
lano, P. R. Arch. Biochem. Biophys. 1995, 319, 333.
8. Blanke, S. R.; Hager, L. P. J. Biol. Chem. 1988, 263,
18739.
9. Adam, W.; Lazarus, M.; Saha-Mo¨ller, C. R.; Weichold,
O.; Hoch, U.; Ha¨ring, D.; Schreier, P. In Biotransforma-
tions with peroxidases in Biotransformations; Faber, K.,
Ed.; Springer: Berlin, 1999; pp. 73–108.
10. (a) van Deurzen, M. P. J.; Seelbach, K.; van Rantwijk,
F.; Kragl, U.; Sheldon, R. A. Biocatal. Biotransform.
1997, 15, 1–16; (b) Manoj, M. K; Hager, L. P. Biochim.
Biophys. Acta 2001, 1547, 408–417.
11. Ortiz de Montellano, P. R.; Choe, Y. S.; DePillis, G.;
Catalano, C. E. J. Biol. Chem. 1987, 262, 11641–11646.
12. Geigert, J.; Lee, T. D.; Dalietos, D. J.; Hirano, D. S.;
Neidelman, S. L. Biochem. Biophys. Res. Commun. 1986,
136, 778–782.
A reasonable explanation for the formation of all prod-
ucts, including aldehyde 6, under aerobic but not anaer-
obic conditions, involves the intermediacy of the radical
cation I, Scheme 6. This intermediate can lead to
partial isomerization of the dienoic esters that competes
with the oxidation of the terminal methyl group, and
can react with oxygen to form the dioxetane intermedi-
ate that leads to the cleaved product aldehyde 6. Simi-
lar CꢀC bond cleavage products have been observed in
many cases.28 Further studies on the mechanism of
these reactions, including the competition between iso-
merization and hydrogen abstraction, are currently
under investigation in our laboratories.
13. Alain, E. J.; Hager, L. P.; Deng, L.; Jacobsen, E. N. J.
Am. Chem. Soc. 1993, 115, 4415–4416.
14. Lakner, F. J.; Cain, K. P.; Hager, L. P. J. Am. Chem.
Acknowledgements
Soc. 1997, 119, 443–444.
15. Dexter, A. F.; Lakner, F. J.; Campbell, R. A.; Hager, L.
P. J. Am. Chem. Soc. 1995, 117, 6412–6413.
16. Lakner, F. J.; Hager, L. P. Tetrahedron: Asymmetry 1997,
8, 3547–3550.
17. Elfarra, A. A.; Duescher, R. J.; Pasch, C. M. Arch.
Biochem. Biophys. 1991, 286, 244–251.
We thank Professor G. J. Karabatsos for his valuable
comments. This work was supported by the graduate
program EPEAEK.
18. Sanfilippo, C.; Patti, A.; Nicolosi, G. Tetrahedron: Asym-
References
metry 2000, 11, 3269–3272.
19. Lewis, F. D.; Howard, D. K.; Barancyk, S. V.; Oxman, J.
D. J. Am. Chem. Soc. 1986, 108, 3016.
20. (a) Bur, D.; Nikles, M.; Se´quin, U.; Neuburger, M.;
Zehnder, M. Helv. Chim. Acta 1993, 76, 1863; (b) Lee, A.
S.-Y.; Su, F.-Y; Liao, Y.-C. Tetrahedron Lett. 1999, 40,
1323; (c) Akita, H.; Saotome, C.; Ono, M. Tetrahedron:
Asymmetry 1996, 7, 2595.
1. Shaw, P. D.; Hager, L. P. J. Biol. Chem. 1961, 236,
1626–1630.
2. Hager, L. P.; Morris, D. R.; Brown, F. S.; Eberwein, H.
J. Biol. Chem. 1966, 241, 1769–1777.
3. Thomas, J. A.; Morris, D. R.; Hager, L. P. J. Biol. Chem.
1970, 245, 3129.
4. Zaks, A.; Dodds, D. R. J. Am. Chem. Soc. 1995, 117,
10419–10424.
21. Hu, S.; Hager, L. P. Tetrahedron Lett. 1999, 40, 1641–
1644.