D. Sanz et al. / Tetrahedron 67 (2011) 4633e4639
4639
(glycine)¼176.1 ppm] and 15N spectra to 15NH4Cl and then con-
9. Balaban, A. T.;Dinculescu, A.;Elguero, J.;Faure, R. Magn. Reson. Chem.1985, 23, 553.
10. Alkorta, I.; Elguero, J. Magn. Reson. Chem. 2004, 42, 955.
d
verted to nitromethane scale using the relationship:
d
15N(MeNO2)¼
11. Sanz, D.; Claramunt, R. M.; Alkorta, I.; Elguero, J. J. Mol. Struct. 2010, 969, 106.
12. In this paper there was an error concerning the 15N chemical shifts of hex-
adecylamine (HDA, 16) and octadecylamine (ODA, 18); they were reported
at ꢀ330.0 ppm in CDCl3 while the correct value (see Table 2) is ꢀ357.5 ppm.
13. Faure, R.; Llinares, J.; Claramunt, R. M.; Elguero, J. Spectrosc. Int. J. 1983, 2, 381.
14. Elguero, J.; Faure, R.; Llinares, J. Spectrosc. Lett. 1987, 20, 149.
15. MacPhail, R. A.; Strauss, H. L.; Snyder, R. G.; Elliger, C. A. J. Phys. Chem.1984, 88, 334.
16. Boese, R.; Weiss, H. C.; Blaser, D. Angew. Chem., Int. Ed. 1999, 38, 988.
17. Kawata, M.; Ten-no, S.; Kato, S.; Hirata, F. J. Am. Chem. Soc. 1995, 117, 1638.
19. Maksic, Z. B.; Vianello, R. J. Phys. Chem. A 2002, 106, 419.
d
15N(NH4Cl)ꢀ338.1 ppm. Typical acquisition parameters for 13C
CPMAS were: spectral width, 40 kHz; recycle delay, 5e15 s; acqui-
sition time, 30 ms; contact time, 2 ms; and spin rate,12 kHz. Typical
acquisition parameters for 15N CPMAS were: spectral width, 40 kHz;
recycle delay, 15 s; acquisition time, 30 ms; contact time, 2e5 ms;
and spin rate, 6 kHz.
4.3. Computational details
20. Raabe, G.; Wang, Y.; Feischhauer, J. Z. Naturforsch. 2000, 55a, 687.
21. Vianello, R.; Maskill, H.; Maksic, Z. B. Eur. J. Org. Chem. 2006, 2581.
22. Blanco, F.; Alkorta, I.; Elguero, J. Magn. Reson. Chem. 2007, 45, 797.
23. Llinares, J.; Elguero, J.; Faure, R.; Vincent, E.-J. Magn. Reson. Chem. 1980, 14, 20.
24. Duthaler, R. O.; Roberts, J. D. J. Am. Chem. Soc. 1998, 100, 3889.
Calculations were carried out at the B3LYP/6-31G
level31,32
*
using the Gaussian 03 programs.33 Frequency calculations at the
same level were carried out to verify that the structures correspond
to energy minima (no imaginary frequencies). A further geometry
optimization has been carried out at B3LYP/6-311þþG(d,p) com-
putational level. These geometries have been used for the calcula-
tions of the absolute chemical shieldings with the GIAO method34
at the same computational level. No other computational
methods were used since GIAO/B3LYP/6-311þþG(d,p) afforded
convenient results in previous works,22,25,35 but we are aware that
depending on the nucleus other possibilities could be preferable.36
ꢀ
25. Navarro, P.; Reviriego, F.; Alkorta, I.; Elguero, J.; Lopez, C.; Claramunt, R. M.;
~
García-Espana, E. Magn. Reson. Chem. 2006, 44, 1067.
26. Sarneski,J. E.;Surprenant,H. L.;Molen,F. K.;Reilley, C.N. Anal. Chem.1975, 47, 2116.
27. Cambridge Structural Database Allen, F. H. Acta Crystallogr., Sect. B 2002, 58,
380; Available from: Allen, F. H.; Motherwell, W. D. S. Acta Crystallogr., Sect. B
28. (a) Apperley, D. C.; Fletton, R. A.; Harris, R. K.; Lancaster, R. W.; Tavener, S.;
ꢀ
Threlfall, T. L. J. Pharm. Sci. 1999, 88, 1275; (b) Claramunt, R. M.; Escolastico, C.;
ꢀ
Elguero, J. Arkivoc 2001, i, 183; (c) Claramunt, R. M.; Lopez, C.; García, M. A.;
ꢀ
Otero, M. D.; Torres, M. R.; Pinilla, E.; Alarcon, S. H.; Alkorta, I.; Elguero, J. New J.
Chem. 2001, 25, 1061; (d) Portieri, A.; Harris, R. K.; Fletton, R. A.; Lancaster, R.
W.; Threlfall, T. L. Magn. Reson. Chem. 2004, 42, 313; (e) Santa María, M. D.;
Claramunt, R. M.; García, M. A.; Elguero, J. Tetrahedron 2007, 63, 3737.
29. Gamer, A. O.; Heliwig, J.; van Ravenzwaay, B. Food Chem. Toxicol. 2002, 40, 1833.
30. Chanley, J. D.; Kalichstein, S.; Gindler, E. M. J. Am. Chem. Soc. 1953, 75, 5133.
31. Becke, A. D. Phys. Rev. A 1988, 38, 3098; Becke, A. D. J. Chem. Phys. 1993, 98,
5648; Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
Acknowledgements
This work was carried out with financial support from the
Ministerio de Ciencia e Innovacion (CTQ2010-16122 and CTQ2009-
13129-C02-02) and Comunidad Autonoma de Madrid (Project
ꢀ
ꢀ
32. Hariharan, P. A.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz,
J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03;
Gaussian,: Pittsburgh, PA, 2003.
MADRISOLAR2, ref. S2009/PPQ-1533). Thanks are given to the CTI
(CSIC) for allocation of computer time.
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. Elguero, J. An. Quim. 2005, 101, 31.
2. van Schaick, E. A.; Tukker, H. E.; Roelen, H. C. P. F.; Ijzerman, A. P.; Danhof, M. Br.
J. Pharmacol. 1998, 124, 607.
34. (a) Ditchfield, R. Mol. Phys.1974, 27, 789; (b) London, F. J. Phys. Radium 1937, 8, 397.
3. Song, M.; Clark, M. J. Chem. Inf. Model. 2006, 46, 392.
4. Stothers, J. B. Carbon-13 NMR Spectroscopy; Academic: New York, NY, 1972.
5. Breitmaier, E.; Voelter, W. 13C NMR Spectroscopy, 2nd ed.; Chemie: Weinheim,
1978; p 185.
6. Kalinowski, H. O.; Berger, S.; Braun, S. Carbon-13 NMR Spectroscopy; John Wiley
& Sons: Chichester, UK, 1988.
7. Berger, S.; Braun, S.; Kalinowski, H.-O. NMR Spectroscopy of the Non-Metallic
Elements; Wiley: Chichester, UK, 1997.
8. Faure, R.; Llinares, J.; Elguero, J. An. Quim. 1985, 81C, 167.
ꢀ
ꢀ
ꢀ
35. (a) Perez-Torralba, M.; Lopez, C.; Perez-Medina, C.; Claramunt, R. M.; Pinilla, E.;
Torres, M. R.; Alkorta, I.; Elguero, J. Cryst. Eng. Comm. 2010, 12, 4052; (b) Alkorta,
I.; Elguero, J. Magn. Reson. Chem. 2010, 48, S32; (c) Alkorta, I.; Elguero, J. Tet-
rahedron: Asymmetry 2010, 21, 437; (d) Ballesteros-Garrido, R.; Bonnafoux, L.;
Blanco, F.; Ballesteros, R.; Leroux, F. R.; Abarca, B.; Colobert, F.; Alkorta, I.; El-
guero, J. Dalton Trans. 2011, 40, 1387.
36. Pedone, A.; Pavone, M.; Menziani, M. C.; Barone, V. J. Chem. Theory Comput.
2008, 4, 2130.