Interactions of Metal Ions with a Ferrocenoyl–Histidine Peptide Conjugate
Hε1), 7.45 (t, J = 6.2 Hz, 2 H, NHb), 7.04 (s, 2 H, Hδ2), 4.93 (m, 2
H, CHα), 4.78 (m, 2 H, H-Fc), 4.73 (m, 2 H, H-Fc), 4.43 (m, 2 H,
H-Fc), 4.27 (m, 2 H, H-Fc), 3.99 (m, 4 H, CH2-ester), 3.58 (s, 6 H,
d) S. Chowdhury, G. Schatte, H. B. Kraatz, Angew. Chem. Int.
Ed. 2006, 45, 6882–6884; e) S. Chowdhury, G. Schatte, H. B.
Kraatz, Angew. Chem. Int. Ed. 2008, 47, 7056–7059.
a) R. S. Herrick, R. M. Jarret, T. P. Curran, D. R. Dragoli,
M. B. Flaherty, S. E. Lindyberg, R. A. Slate, L. C. Thornton,
Tetrahedron Lett. 1996, 37, 5289–5292; b) T. Moriuchi, A. No-
moto, K. Yoshida, A. Ogawa, T. Hirao, J. Am. Chem. Soc.
2001, 123, 68–75; c) D. R. van Staveren, T. Weyhermüller, N.
Metzler-Nolte, Dalton Trans. 2003, 210–217; d) D. R. van Stav-
eren, N. Metzler-Nolte, Chem. Rev. 2004, 104, 5931–5985; e)
S. I. Kirin, H. B. Kraatz, N. Metzler-Nolte, Chem. Soc. Rev.
2006, 35, 348–354; f) T. Moriuchi, T. Nagai, T. Hirao, Org.
Lett. 2005, 7, 5265–5268; g) T. Moriuchi, T. Nagai, T. Hirao,
Org. Lett. 2006, 8, 31–34; h) K. Heinze, M. Beckmann, Eur. J.
Inorg. Chem. 2005, 3450–3457; i) S. I. Kirin, U. Schatzschne-
ider, X. De Hatten, T. Weyhermüller, N. Metzler-Nolte, J. Or-
ganomet. Chem. 2006, 691, 3451–3457; j) J. Lapic, D. Siebler,
K. Heinze, V. Rapic, Eur. J. Inorg. Chem. 2007, 2014–2024; k)
K. Heinze, D. Siebler, Z. Anorg. Allg. Chem. 2007, 633, 2223–
2233; l) M. C. Semenic, D. Siebler, K. Heinze, V. Rapic, Orga-
nometallics 2009, 28, 2029–2037; m) S. Djakovic, D. Siebler,
M. C. Semenic, K. Heinze, V. Rapic, Organometallics 2008, 27,
1447–1453; n) S. I. Kirin, D. Wissenbach, N. Metzler-Nolte,
New J. Chem. 2005, 29, 1168–1173; o) X. Hatten, T. Weyher-
nuller, N. Metzler-Nolte, J. Organomet. Chem. 2004, 689, 4856–
4867; p) M. Kawai, U. Nagai, Y. Inai, H. Yamamura, R. Aka-
saka, S. Takagi, Y. Miwa, T. Taga, Pept. Sci. 2005, 80, 186–
198.
a) F. Noor, R. Kinscherf, G. A. Bonaterra, S. Walczak, S.
Woelfl, N. Metler-Nolte, ChemBioChem 2009, 10, 493–502; b)
N. Metzler-Nolte, Chimia 2007, 61, 736–741; c) J. T. Chantson,
M. V. V. Falzacappa, S. Crovella, N. Metzler-Nolte, ChemMed-
Chem 2006, 1, 1268–1274.
a) K. A. Mahmoud, H.-B. Kraatz, Chem. Eur. J. 2007, 13,
5885–5895; b) K. Kerman, K. A. Mahmoud, H.-B. Kraatz,
Chem. Commun. 2007, 3829–3831; c) K. A. Mahmoud, J. H.
Luong, Anal. Chem. 2008, 80, 7056–7062; d) K. A. Mahmoud,
S. Hrapvic, J. H. Luong, ACS Nano 2008, 2, 1051–1057; e) K.
Kerman, H.-B. Kraatz, Analyst 2009, 134, 2400–2404.
X. Hatten, E. Bothe, K. Merz, I. Huc, N. Metzler-Nolte, Eur.
J. Inorg. Chem. 2008, 4530–4537.
[2]
COOCH3), 3.09 (d, J = 7.3 Hz, 4 H, CH2-imidazole) ppm. 13C
NMR (CDCl3, 298 K, c = 10 m): δ = 173.5, 170.7, 170.4, 147.0,
140.7, 136.7, 135.4, 129.6, 128.4, 121.4, 118.2, 77.2, 76.4, 72.1, 71.6,
1
70.6, 70.4, 53.6, 52.4, 41.7, 29.7 ppm. H NMR (CD3CN, 298 K,
C = 1 m): δ = 8.77 (s, 1 H, H-DNP), 8.76 (s, 1 H, H-DNP), 8.545
(m, 2 H, H-DNP), 8.53 (d, J = 7.8 Hz, 2 H, NHa), 7.80 (m, 2 H,
H-DNP), 7.74 (s, 2 H, Hε1), 7.55 (t, J = 5.7 Hz, 2 H, NHb), 7.16
(s, 2 H, Hδ2), 4.81 (m, 2 H, CHα), 4.73 (m, 2 H, H-Fc), 4.68 (m, 2
H, H-Fc), 4.43 (m, 2 H, H-Fc), 4.34 (m, 2 H, H-Fc), 3.95 (m, 4 H,
CH2-ester), 3.55 (s, 6 H, COOCH3), 3.07 (m, 4 H, CH2-imidazole)
ppm. 13C NMR (CD3CN, 298 K, c = 1 m): δ = 174.1, 170.5,
169.9, 168.6, 166.5, 147.1, 130.0, 128.8, 121.5, 110.4, 76.8, 71.8,
71.5, 71.0, 69.9, 53.5, 52.0, 41.4, 37.0, 32.8 ppm. TOF MS (ES+):
calcd. for C42H38FeN12O16 [M + H]+ 1023.1956; found 1023.1920.
C42H38FeN12O16 (1022.67): calcd. C 49.33, H 3.75, N 16.44; found
C 49.60, H 3.87, N 16.66.
Electrochemical Studies: All electrochemical experiments described
here make use of a glassy carbon working electrode (diameter
3 mm), Pt wire as counter electrode, and Ag wire as pseudo-refer-
ence electrode. The glassy carbon electrode was polished with
0.05 µm Al2O3, sonicated in MilliQ water for 1 min to fully remove
any absorbed Al2O3, rinsed in MilliQ water, and dried under N2.
[3]
The Pt wire was sonicated and rinsed with ethanol and MilliQ
water, dried under N2, and flamed by using a propane torch until
glowing red. The Ag wire was sonicated and rinsed with ethanol
and MilliQ water, and polished with sand paper. All electrochemi-
cal data were reported relative to the Fc/Fc+ redox couple. Acetoni-
[4]
trile was dried with CaH2 and freshly distilled prior to use. TBAP
(0.1 in acetonitrile) was used as the supporting electrolyte. Conju-
gate 2 was studied at concentrations of 1 m in the supporting
electrolyte solution. Since most of the metal salts contain water, it
was decided to probe the effect of water since it is known that the
[5]
addition of water to an Fc–peptide conjugate can result in shifts to
lower potentials;[16] however, no significant effects were observed.
[6]
T. Moriuchi, K. Yoshida, T. Hirao, J. Organomet. Chem. 2001,
637–639, 75–79.
S. Chowdhury, G. Schatte, H.-B. Kraatz, Eur. J. Inorg. Chem.
2006, 988–993.
H. Huang, L. Mu, J. He, J.-P. Cheng, J. Org. Chem. 2003, 68,
7605–7611.
a) H. Sigel, R. B. Martin, Chem. Rev. 1982, 82, 385–426; b)
N. I. Jakab, A. Jancso, T. Gajda, B. Gyurcsik, A. Rockenbauer,
J. Inorg. Biochem. 2008, 102, 1438–1448; c) I. N. Jakab, O. Lor-
incz, A. Jancso, T. Gajda, B. Gyurcsik, Dalton Trans. 2008,
6987–6995.
The metal salts were added in 0.1 equiv. portions to the analyte
solution.
[7]
Supporting Information (see footnote on the first page of this arti-
1
[8]
cle): CV, CD spectroscopy, H, g-cosy, VC, and VT NMR spectra
1
of conjugate 2, CV titration plots and H NMR titration spectra
[9]
of conjugate 2 with metal ions, CV plots and 1H NMR spectra
of conjugate 2 with introducing H2O effect, and mass spectra of
conjugate 2 and its metal complexes.
[10]
For example: a) J. Shearer, V. A. Szalai, J. Am. Chem. Soc.
2008, 130, 17826–17835; b) D. F. Raffa, R. Gomez-Balderas, P.
Brunelle, G. A. Rickard, A. Rauk, J. Biol. Inorg. Chem. 2005,
10, 887–902; c) M. A. Zoroddu, S. Medici, M. Peana, J. Inorg.
Biochem. 2009, 103, 1214–1220; d) V. Minicozzi, S. Morante,
G. C. Rossi, F. Stellato, N. Christian, K. Jansen, Int. J. Quan-
tum Chem. 2008, 108, 1992–2015.
a) E. Chow, J. J. Gooding, Electroanalysis 2006, 18, 1437–1448;
b) W. R. Yang, D. Jaranillo, J. J. Gooding, D. B. Hibbert, R.
Zhang, G. D. Willett, K. J. Fisher, Chem. Commun. 2001, 1982–
1983.
Acknowledgments
The authors thank Natural Sciences and Engineering Research
Council of Canada and the China Scholarship Council for finan-
cial support in the form of a scholarship to L.-Y. C. We acknow-
ledge the financial support of the Shanghai Shuguang Project
(07SG36) and funding from the Ministry of Health (Grant
2009ZX10004-301). We also want to acknowledge discussions with
Dr. Sanela Martic.
[11]
[12]
E. S. Stevens, N. Sugawara, G. M. Bonora, C. Toniolo, J. Am.
Chem. Soc. 1980, 102, 7048–7050.
[1] a) L. Barisic, M. Dropucic, V. Rapic, H. Pritzkow, S. I. Kirin,
[13]
N. Metzler-Nolte, Chem. Commun. 2004, 2004–2005; b) L.
Barisic, M. Cakic, K. A. Mahmoud, Y.-n. Liu, H.-B. Kraatz,
H. Pritzkow, S. I. Kirin, N. Metzler-Nolte, V. Rapic, Chem. Eur.
J. 2006, 12, 4965–4980; c) S. Chowdhury, K. A. Mahmoud, G.
Schatte, H. B. Kraatz, Org. Biomol. Chem. 2005, 3, 3018–3023;
a) S. R. Bayly, P. D. Beer, G. Z. Chen, in: Ferrocenes: Ligands,
Materials and Biomolecules (Ed.: P. Stepnicka), Wiley, New
York, 2008; b) P. D. Beer, J. P. Danks, D. Hesek, J. F. McAleer,
J. Chem. Soc., Chem. Commun. 1993, 1735–1737; c) A. Ches-
ney, M. R. Bryce, A. S. Batsanov, J. A. K. Howard, L. M.
Eur. J. Inorg. Chem. 2010, 5231–5238
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5237