W. Zhu et al.
Bull. Chem. Soc. Jpn., 78, No. 7 (2005) 1367
Yang, M. D’Iorio, and S. N. Wang, J. Mater. Chem., 12, 206
(2002). d) I. Y. Wu, J. T. Lin, Y. T. Tao, E. Balasubramaniam,
Y. Z. Su, and C. W. Ko, Chem. Mater., 13, 2626 (2001).
quench of the naphthalimide moiety in the TPA-NP systems
mostly results from PIET between the triphenylamine (donor)
and naphthalimide units (acceptor). It is believed that the two
possibilities, both the specifically low oxidation of TPA and
the benzene bridge, can be attributed to the occurrence of such
very rare opposite PIET from the imide side of naphthalimide
to the naphthalene unit. Our studied model suggests that the
luminescence quenching induced by possible through-bond
PIET should be desirably considered when incorporating a
triphenylamine unit to a chromophore for designing bipolar
or star-shaped emitters.
5
and K. Mullen, Adv. Mater., 14, 809 (2002). b) Q. Fang and T.
a) C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov,
¨
Yamamoto, Macromolecules, 37, 5894 (2004). c) J. P. Lu, Y.
Tao, M. D’Iorio, Y. N. Li, J. F. Ding, and M. Day, Macromole-
cules, 37, 2442 (2004). d) C. F. Shu, R. Dodda, F. I. Wu, M. S.
Liu, and A. K.-Y. Jen, Macromolecules, 36, 6698 (2003). e)
M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu,
and E. P. Woo, Adv. Mater., 11, 241 (1999).
6
V. Balzani, ‘‘Electron Transfer in Chemistry,’’ Wiley-
VCH, Weinheim, Germany (2001).
a) A. Watanabe and O. Ito, J. Phys. Chem., 98, 7736
This work was supported by NSFC/China (Project
No. 20106006), Education Committee of Shanghai and Scien-
tific Committee of Shanghai (04dz05102). W. H. Zhu thanks
the foundation for National excellent dissertation of P. R.
China (Project No. 200143).
7
(1994). b) A. Watanabe, O. Ito, and K. Mochida, Organometallics,
14, 4281 (1995). c) K. Matsumoto, M. Fujitsuka, T. Sato, S.
Onodera, and O. Ito, J. Phys. Chem. B, 104, 11632 (2000).
8
a) C. A. Hunter and R. K. Hyde, Angew. Chem., Int. Ed.
Engl., 35, 1936 (1996). b) S. R. Greenfield, W. A. Svec, D.
Gosztola, and M. R. Wasielewski, J. Am. Chem. Soc., 118, 6767
(1996).
References
1
2
Y. Shirota, J. Mater. Chem., 10, 1 (2000).
a) C. F. Shu, R. Dodda, F. I. Wu, M. S. Liu, and A. K. Y.
9
a) M. Lor, L. Viaene, R. Pilot, E. Fron, S. Jordens,
G. Schweitzer, T. Weil, K. Mullen, J. W. Verhoeven, M. Van
¨
Jen, Macromolecules, 36, 6698 (2003). b) H. Doi, M. Kinoshita,
K. Okumoto, and Y. Shirota, Chem. Mater., 15, 1080 (2003). c)
N. Koch, A. Rajagopal, J. Ghijsen, R. L. Johnson, G. Leising,
and J. J. Pireaux, J. Phys. Chem. B, 104, 1434 (2000). d) X. Jiang,
R. A. Register, K. A. Killeen, M. E. Thompson, F. Pschenitzka,
and J. C. Sturm, Chem. Mater., 12, 2542 (2000). e) N. Tamoto,
C. Adachi, and K. Nagai, Chem. Mater., 9, 1077 (1997). f) M.
S. Wong, Z. H. Li, Y. Tao, and M. D’Iorio, Chem. Mater., 15,
1198 (2003). g) K. R. J. Thomas, J. T. Lin, Y. T. Tao, and C.
H. Chuen, J. Mater. Chem., 12, 3516 (2002). h) Y. J. Bing, L.
M. Leung, and G. Menglian, Tetrahedron Lett., 45, 6361
(2004). i) Y. J. Pu, T. Kurata, M. Soma, J. Kido, and H. Nishide,
Synth. Met., 143, 207 (2004). j) Z. Liu, Y. G. Zhang, Y. F. Hu, G.
P. Su, D. G. Ma, L. X. Wang, X. B. Jing, and F. S. Wang, J.
Polym. Sci., Part A: Polym. Chem., 40, 1122 (2002). k) Y. G.
Zhang, Y. F. Hu, H. C. Li, L. X. Wang, X. B. Jing, F. S. Wang,
and D. G. Ma, J. Mater. Chem., 13, 773 (2003).
der Auweraer, and F. C. De Schryver, J. Phys. Chem. B, 108,
10721 (2004). b) H. Onodera, Y. Araki, M. Fujitsuka, S. Onodera,
O. Ito, F. L. Bai, M. Zheng, and J. L. Yang, J. Phys. Chem. A, 105,
7341 (2001). c) M. Lor, J. Thielemans, L. Viaene, M. Cotlet,
J. Hofkens, T. Weil, C. Hampel, K. Mullen, J. W. Verhoeven,
¨
M. Van der Auweraer, and F. C. De Schryver, J. Am. Chem.
Soc., 124, 9918 (2002). d) E. L. Aleksandrova, Semiconductors,
36, 1299 (2002).
10 M. Yano, Y. Ishida, K. Aoyama, M. Tatsumi, K. Sato, D.
Shiomi, A. Ichimura, and T. Takui, Synth. Met., 137, 1275 (2003).
11 a) P. Du, W. H. Zhu, Y. Q. Xie, F. Zhao, C. F. Ku, Y. Cao,
C. P. Chang, and H. Tian, Macromolecules, 37, 4387 (2004). b) F.
S. Meng, C. Z. Liu, J. L. Hua, Y. Cao, K. C. Chen, and H. Tian,
Eur. Polym. J., 39, 1325 (2003). c) W. H. Zhu, H. Tian, and A.
Elschner, Chem. Lett., 1999, 501. d) W. H. Zhu, C. Hu, K. C.
Chen, and H. Tian, Synth. Met., 96, 151 (1998). e) H. Tian,
W. H. Zhu, and K. C. Chen, Synth. Met., 91, 229 (1997).
12 W. H. Zhu, M. Hu, R. Yao, and H. Tian, J. Photochem.
Photobiol. A, 154, 169 (2003).
3
a) F. Santerre, I. Bedja, J. P. Dodelet, Y. Sun, J. Lu, A. S.
Hay, and M. D’Iorio, Chem. Mater., 13, 1739 (2001). b) P. Kundu,
K. R. J. Thomas, J. T. Lin, Y. T. Tao, and C. H. Chien, Adv.
Funct. Mater., 13, 445 (2003). c) C. W. Ko and Y. T. Tao, Synth.
Met., 126, 37 (2002).
4 a) M. Thelakkat and H. W. Schmidt, Adv. Mater., 10, 219
(1998). b) K. R. J. Thomas, J. T. Lin, Y. T. Tao, and C. H. Chuen,
Adv. Mater., 14, 822 (2002). c) J. Pang, Y. Tao, S. Freiberg, X. P.
13 T. Forster, Ann. Phys. Leipzig, 2, 55 (1948).
¨
14 D. Rehm and A. Weller, Isr. J. Chem., 8, 259 (1970).
15 a) A. P. de Silva and T. E. Rice, Chem. Commun., 1999,
163. b) A. P. de Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan,
C. P. McCoy, T. E. Rice, and J. P. Soumillion, Angew. Chem.,
Int. Ed. Engl., 34, 1728 (1995).