K.D. Bhatte et al. / Catalysis Communications 11 (2010) 1233–1237
1237
Table 3
Acknowledgements
Recyclability of catalyst.a
Yieldb (%)
The financial support from UGC-Green Technology Center, Univer-
sity of Mumbai and collaborative support from DST-JSPS for Indo-
Japan project no. DST/INT/JAP/P-67/08 are gratefully acknowledged.
Entry
Run
1
2
3
4
Fresh
First
Second
Third
90
88
85
85
References
a
Acetyl acetone (1 mmol), aniline (1 mmol), Ag Np (0.2 mmol), and temperature
[1] G. Li, K. Watson, R.W. Buckheit, Y. Zhang, Org. Lett. 9 (2007) 2043–2046.
[2] J.D. White, D.C. Lhle, Org. Lett. 8 (2006) 1081–1084.
[3] M. Abass, B.B. Mostafa, Bioorg. Med. Chem. 13 (2005) 6133–6144.
[4] D. Russowsky, B.A.S. Neto, Tetrahedron Lett. 44 (2003) 2923–2926.
[5] B.A.D. Neto, A.A.M. Lapis, A.B. Bernd, D. Russowsky, Tetrahedron 65 (2009)
2484–2496.
(60 °C).
b
Yield based on GC analysis.
with aliphatic, aromatic and alicyclic amines under optimized reaction
conditions (Table 2, entries 7–10). The bulky diketone, benzalcetone
also reacted smoothly with butyl amine to furnish a product with a
90% yield (Table 2, entry 11).
An important criterion for heterogeneous catalysis is the reusabil-
ity of catalyst to make the process more economical which suggests us
to study the recyclability of silver nanoparticles. The series of reaction
cycles were ran in order to investigate the efficiency of the catalytic
system for reaction 1 in Table 2. During each cycle the catalyst was
separated by centrifugation method, and then used for the next
reaction after washing with distilled water and ethanol. The catalyst
revealed a remarkable activity and was reused up to three consecutive
cycles without any significant loss in catalytic activity (Table 3).
[6] M.T. Epperon, D.Y. Gin, Angew. Chem. Int. Ed. 41 (2002) 1778–1782.
[7] N.D. Eddington, D.S. Cox, R.R. Roberts, J.P. Stables, C.B. Powell, K.R. Scott, Curr.
Med. Chem. 7 (2000) 417–427.
[8] Y. Zhao, J. Zhao, Y. Zhou, Z. Lei, L. Li, Hongbin Zhang, New J. Chem. 29 (2005)
769–772.
[9] G. Palmieri, C. Cimarelli, ARKIVOC 6 (2006) 104–126.
[10] F. Epifano, S. Genoveseb, M. Curinib, Tetrahedron Lett. 48 (2007) 2717–2720.
[11] B. Das, K. Venkateswarlu, A. Majhi, M.R. Reddy, K.N. Reddy, Y.K. Rao, K. Ravikumar,
B. Sridhar, J. Mol, Catal. A: Chem. 246 (2006) 276–281.
[12] B. Giuseppe, B. Marcella, L. Manuela, M. Enrico, M. Paolo, S. Letizia, Synlett (2004)
239–242.
[13] Z.-H. Zhang, L. Yin, Y.-M. Wang, Adv. Synth. Catal. 348 (2006) 184–190.
[14] Z. Zhan-Hui, H. Jin-Yong, J. Braz. Chem. Soc. 17 (2006) 1447–1451.
[15] C.A. Brandt, A.C.M.P. da Silva, C.G. Pancote, C.L. Brito, M.A.B. da Silveira, Synthesis
10 (2004) 1557–1559.
[16] B. Rechsteiner, F.T. Boullet, J. Hamelin, Tetrahedron Lett. 34 (1993) 5071–5074.
[17] C.N. Rao, A.M. Kller, A.K. Cheetham, The Chemistry of Nanomaterials: Synthesis
and Applications, vol. 1, Wiley-VCH, Weinheim, 2004, pp. 555–562.
[18] F.L. Astruc, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852–7872.
[19] A. Murugadoss, A. Chattopadhyay, Nanotechnology 192 (2008) 015603–015607.
[20] P. Sanpui, A. Murugadoss, P.V.D. Prasad, S.S. Ghosh, A. Chattopadhyay Int, J. Food
Microbiol. 124 (2008) 142–146.
4. Conclusion
In conclusion, we have developed an efficient protocol for synthesis
of β-enaminones and β-enamino esters using silver nanoparticles as
a heterogeneous, recyclable and moisture stable catalyst. The reaction
was optimized with respect to various parameters and could be
employed for the condensation of different dicarbonyl compounds
and amines. The advantages offered by this protocol include high
yields of desired products, under ambient conditions with diverse
substrate compatibility making it an important supplement to the
existing methods.
[21] A. Murugadoss, A. Chattopadhyay, J. Phys. Chem. C 112 (2008) 11265–11271.
[22] W. Yan, R. Wang, Z. Xu, J. Xu, L. Lin, Z. Shen, Y. Zhou, J. Mol. Cat. A: Chem. 255
(2006) 81–85.
[23] M. Kidwai, V. Bansal, A. Kumar, N.K. Mishra, S. Mozundar. Synlett. 9 (2007)
742–745.
[24] A.R. Gholap, N.S. Chakor, T. Daniel, R.J. Lahoti, K.V. Srinivasan, J. Mol. Catal. A;
Chem. 245 (2006) 37–46.
[25] E. Rafiee, H. Mahdavi, S. Eavani, M. Joshaghani, F. Shiri, Appl. Catal. A: Gen. 352
(2009) 202–207.
[26] Y.Y. Ke, Y.J. Li, J.H. Jia, W.J. Sheng, L. Han, J.R. Gao, Tetrahedron Lett. 50 (2009)
1389–1391.