LETTER
Methods for the Construction of New Highly Functionalised Guanidines
1819
for 3 h at r.t. The resins were filtered off, washed with MeOH and
CH2Cl2 and the filtrate was concentrated in vacuo to give 6 and 7.
The silyl ether 7 was deprotected in a mixture of MeOH (1 mL) and
5 M aq HOAc (2 mL) at 70 °C overnight. The solvent was removed
and the residue triturated in Et2O to give the desilylated product 6.
Selected Data for Compound 6a: 1H NMR (500 MHz, DMSO-d6):
d = 9.27 (1 H, br s, NH), 7.26–7.21 (4 H, m), 6.83–6.81 (4 H, m),
4.63 (1 H, br s, H-5), 4.19 (1 H, br s, H-2¢), 3.94 (2 H, d, J = 5.5 Hz,
H-3¢), 3.55–3.36 (6 H, m, H-4,6, H-1¢). 13C NMR (125 MHz,
CDCl3): d = 156.6, 155.1, 154.4, 129.9, 129.5, 126.6, 118.2, 117.9,
115.8, 70.2, 69.3, 65.9, 44.7, 42.0. ESI-MS: m/z (%) = 411 (100)
[M + H+].
Selected Data for Compound 6b: 1H NMR (400 MHz, DMSO-d6):
d = 7.74 (1 H, d, J = 6.7 Hz, H-Arom.), 7.30 (2 H, d, J = 9.0 Hz,
H-Arom.), 7.10–6.94 (3 H, m, H-Arom.), 6.98 (2 H, d, J = 9.0 Hz,
H-Arom.), 4.90 (1 H, mc, H-5), 4.14 (1 H, mc, H-2¢), 4.05 (2 H, mc,
H-3¢), 3.53–3.43 (6 H, m, H-4,6, H-1¢), 2.17 (3 H, s, CH3). ESI-MS:
m/z (%) = 434 (100) [M + H+].
References
(1) (a) Kienzle, F.; Kaiser, A.; Madhukar, S. C. Eur. Med.
Chem. 1982, 17, 547. (b) Weinhardt, K.; Wallach, M. B.;
Marx, M. J. Med. Chem. 1985, 28, 694. (c) Rockway, T. W.
Expert Opin. Ther. Patents 2003, 13, 773. (d)ChironCorp.,
Expert Opin. Ther. Patents 2003, 13, 551. (e) Donnelly, L.
E.; Rogers, D. F. Expert Opin. Ther. Patents 2003, 13, 1345.
(f) Lehmann, J.; Rob, B. Liebigs Ann. Chem. 1994, 805.
(2) (a) Marmillon, C.; Bompart, J.; Calas, M.; Escale, R.;
Bonnet, P.-A. Heterocycles 2000, 53, 1317. (b) Liu, F.; Lu,
G.-Y.; He, W.-J.; Mei, Y.-H.; Zhu, L.-G. Synthesis 2001, 4,
607. (c) Bruno, O.; Brullo, C.; Ranise, A.; Schenone, S.;
Bondavalli, F.; Barocelli, E.; Ballabeni, V.; Chiavarini, M.;
Tognolini, M.; Impicciatore, M. Bioorg. Med. Chem. Lett.
2001, 11, 1397. (d) Linney, I. D.; Buck, I. M.; Harper, E. A.;
Kalindjian, S. B.; Pether, M. P.; Shankley, N. P.; Watt, G. F.;
Wright, P. T. J. Med. Chem. 2000, 43, 2362. (e) For a micro
review see: Manimala, J. C.; Anslyn, E. V. Eur. J. Org.
Chem. 2002, 3909.
(3) Sandin, H.; Swanstein, M.-L.; Wellner, E. J. Org. Chem.
2004, 69, 1571.
(4) (a) Plenkiewicz, H.; Dmowski, W. J. Fluorine Chem. 1991,
51, 43. (b) Goessnitzer, E.; Malli, R.; Schuster, S.; Favre, B.;
Ryder, S. Arch. Pharm. 2002, 11, 535.
(5) Favretto, L.; Nugent, W.; Licini, G. Tetrahedron Lett. 2002,
43, 2581.
(6) Booth, R. J.; Hodges, J. C. J. Am. Chem. Soc. 1997, 119,
4882.
1
Selected Data for Compound 6c: H NMR (500 MHz, CDCl3):
d = 7.35 (1 H, d, J = 8.8 Hz, H-Arom.), 7.23 (2 H, d, J = 8.9 Hz, H-
Arom.), 7.00 (1 H, d, J = 2.8 Hz, H-Arom.), 6.82 (2 H, d, J = 8.9 Hz,
H-Arom.), 6.75 (1 H, dd, J = 8.8, 2.8 Hz, H-Arom.), 4.66 (1 H, mc,
H-5), 4.20 (1 H, br s, H-2¢), 3.94 (2 H, mc, H-3¢), 3.57–3.47 (5 H, m,
H-4,6, H-1¢), 3.39–3.34 (1 H, m, H-1¢). 13C NMR (125 MHz,
CDCl3): d = 156.6, 155.2, 154.8, 133.5, 131.2, 129.6, 126.7, 118.4,
116.1, 115.8, 70.4, 69.3, 65.9, 44.6, 42.0. ESI-MS: m/z (%) = 446
(100) [M + H+].
Procedure for the Preparation of 9: To a solution of 83 (0.2 mmol,
45 mg) in THF (dry, 3 mL) n-BuLi (100 mL, 2 M in hexane) was
added at –78 °C. After 30 min, the epoxide 1a (0.2 mmol, 37 mg)
was added and the mixture was allowed to attain r.t. overnight. After
concentration in vacuo and flash column chromatography (CH2Cl2:
MeOH:NH4OH, 90:10:1) the guanidine 9 was obtained in 19%
yield. Protonation of 9 in CH2Cl2–THF (1:1) gave the TFA salt. 1H
NMR, 13C NMR spectra as well as the mol peak in mass spectrom-
etry are identical to 6a.
(7) Using protected building blocks (path B), the reaction
performed less sluggishly leading to a substantially increase
in yield.
(8) Fahmy, H. H.; Soliman, G. A. Arch. Pharmacal. Res. 2001,
24, 180.
(9) Chen, B.-C.; Quinlan, S. L.; Reid, J. G.; Jass, P. A.;
Robinson, T. P.; Early, W. A.; Delaney, E. J.; Humora, M. J.
M. Tetrahedron: Asymmetry 1998, 9, 1337.
(10) NMR spectroscopy indicates also the formation of a by-
product with unsymmetrical ring substitution. Attempts to
isolate this compound failed.
(11) The addition of Wang resin ensures the removal of the
unreacted isothiouronium salt. This underlines the
ambivalent reactivity of the starting material 5 towards
alcohols3 and amines under microwave conditions.
Synlett 2004, No. 10, 1817–1819 © Thieme Stuttgart · New York