Journal of the American Chemical Society
Article
(23) Altintas, O.; Artar, M.; ter Huurne, G.; Voets, I. K.; Palmans, A.
R. A.; Barner-Kowollik, C.; Meijer, E. W. Macromolecules 2015, 48,
8921−8932.
(57) Yashima, E. Polym. J. 2010, 42, 3−16.
(58) Bocchinfuso, G.; Palleschi, A.; Mazzuca, C.; Coviello, T.;
Alhaique, F.; Marletta, G. J. Phys. Chem. B 2008, 112, 6473−6483.
(59) Ousaka, N.; Sato, T.; Kuroda, R. J. Am. Chem. Soc. 2009, 131,
3820−3821.
(24) Guichard, G.; Huc, I. Chem. Commun. 2011, 47, 5933−5941.
(25) Ramkumar, S. G.; Ramakrishnan, S. Macromolecules 2010, 43,
2307−2312.
(60) Rodriguez, R.; Quinoa,
Soc. 2016, 138, 9620−9628.
́
E.; Riguera, R.; Freire, F. J. Am. Chem.
̃
(26) Wang, W.; Wan, W.; Stachiw, A.; Li, A. D. Q. Biochemistry 2005,
44, 10751−10756.
(61) Mamiya, F.; Ousaka, N.; Yashima, E. Angew. Chem., Int. Ed.
2015, 54, 14442−14446.
(27) Ghosh, S.; Ramakrishnan, S. Angew. Chem., Int. Ed. 2005, 44,
5441−5447.
(62) Croom, A.; Tarallo, R.; Weck, M. J. Polym. Sci., Part A: Polym.
Chem. 2016, 54, 2766−2773.
(28) Ghosh, S.; Ramakrishnan, S. Macromolecules 2005, 38, 676−686.
(29) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S.
Chem. Rev. 2001, 101, 3893−4011.
(63) Croom, A.; Manning, K. B.; Weck, M. Macromolecules 2016, 49,
7117−7128.
(64) Elacqua, E.; Lye, D. S.; Weck, M. Acc. Chem. Res. 2014, 47,
2405−2416.
(30) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173−180.
(31) Lautrette, G.; Aube, C.; Ferrand, Y.; Pipelier, M.; Blot, V.;
Thobie, C.; Kauffmann, B.; Dubreuil, D.; Huc, I. Chem. - Eur. J. 2014,
20, 1547−1553.
(65) Efimov, A. V. J. Mol. Biol. 1995, 245, 402−415.
(66) Chiang, Y.-S.; Gelfand, T. I.; Kister, A. E.; Gelfand, I. M.
Proteins: Struct., Funct., Genet. 2007, 68, 915−921.
(32) Buratto, J.; Colombo, C.; Stupfel, M.; Dawson, S. J.; Dolain, C.;
Langlois d’Estaintot, B.; Fischer, L.; Granier, T.; Laguerre, M.; Gallois,
B.; Huc, I. Angew. Chem., Int. Ed. 2014, 53, 883−887.
(33) Juwarker, H.; Suk, J.-M.; Jeong, K.-S. Chem. Soc. Rev. 2009, 38,
3316−3325.
(67) Hegyi, H.; Gerstein, M. J. Mol. Biol. 1999, 288, 147−164.
(68) Yang, S. K.; Ambade, A. V.; Weck, M. J. Am. Chem. Soc. 2010,
132, 1637−1645.
(69) Scheinhardt, B.; Trzaskowski, J.; Baier, M. C.; Stempfle, B.;
Oppermann, A.; Woll, D.; Mecking, S. Macromolecules 2013, 46,
7902−7910.
(34) Haldar, D.; Jiang, H.; Leger, J. M.; Huc, I. Angew. Chem., Int. Ed.
2006, 45, 5483−5486.
(70) Lucas, J. M.; Labastide, J. A.; Wei, L.; Tinkham, J. S.; Barnes, M.
D.; Lahti, P. M. J. Phys. Chem. A 2015, 119, 8010−8020.
(71) Menk, F.; Shin, S.; Kim, K. O.; Scherer, M.; Gehrig, D.; Laquai,
F.; Choi, T. L.; Zentel, R. Macromolecules 2016, 49, 2085−2095.
(72) Xu, R.; Schweizer, W. B.; Frauenrath, H. J. Am. Chem. Soc. 2008,
130, 11437−11445.
(73) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J.
Chem. Soc. Rev. 2011, 40, 3496−3508.
(74) Coates, G. W.; Dunn, A. R.; Henling, L. M.; Ziller, J. W.;
Lobkovsky, E. B.; Grubbs, R. H. J. Am. Chem. Soc. 1998, 120, 3641−
3649.
(75) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.;
Lobkovsky, E. B.; Grubbs, R. H. Angew. Chem., Int. Ed. 1999, 38,
2741−2745.
(76) We targeted PNB:PPV feed ratios between 0.5 and 1.5 to
investigate if different properties were observed upon small changes in
the relavtive coil lengths. This ratio supports the PPV blocks still
comprising the majority of the block copolymer in the context of both
molecular weight and overall Dp, relative to each individual PNB block.
(77) Zhu, X.; Traub, M. C.; Vanden Bout, D. A.; Plunkett, K. N.
Macromolecules 2012, 45, 5051−5057.
(78) While we can engineer iterative turns via ROMP in a well-
defined manner, the ability to definitively see the end groups becomes
diminished as the target molecular weight increases. Thus, we use
A(BCA)n, wherein n = 1 or 2 for all featured assemblies herein.
(79) Lye, D. S.; Xia, Y.; Wong, M. Z.; Wang, Y.; Nieh, M.-P.; Weck,
M. Macromolecules 2017, 50, 4244−4255.
(80) The samples were initially prepared at 3.75 μM with respect to
the helical polymers to allow for direct comparison of the helical
homopolymers to the helical portions of the supramolecular block
copolymers. Samples containing PPV oversaturated the detector due
to the increased optical density of the sample. In order to avoid this,
the PIC-PPV and triblock sample were diluted by half. The decreased
absorbance observed in the CD spectrum is a result of this dilution and
is not due to racemization of the helical polymers.
(35) van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W. Chem.
Commun. 2004, 60−61.
(36) Sebaoun, L.; Maurizot, V.; Granier, T.; Kauffmann, B.; Huc, I. J.
Am. Chem. Soc. 2014, 136, 2168−2174.
(37) Sebaoun, L.; Kauffmann, B.; Delclos, T.; Maurizot, V.; Huc, I.
Org. Lett. 2014, 16, 2326−2329.
(38) Cole, J. P.; Hanlon, A. M.; Rodriguez, K. J.; Berda, E. B. J. Polym.
Sci., Part A: Polym. Chem. 2017, 55, 191−206.
(39) Fischer, T. S.; Schulze-Sunninghausen, D.; Luy, B.; Altintas, O.;
Barner-Kowollik, C. Angew. Chem., Int. Ed. 2016, 55, 11276−11280.
(40) Mansfeld, U.; Winter, A.; Hager, M. D.; Hoogenboom, R.;
Gunther, W.; Schubert, U. S. Polym. Chem. 2013, 4, 113−123.
(41) Liu, C.-L.; Lin, C.-H.; Kuo, C.-C.; Lin, S.-T.; Chen, W.-C. Prog.
Polym. Sci. 2011, 36, 603−637.
(42) Willis-Fox, N.; Belger, C.; Fennell, J. F.; Evans, R. C.; Swager, T.
M. Chem. Mater. 2016, 28, 2685−2691.
(43) Rochat, S.; Swager, T. M. ACS Appl. Mater. Interfaces 2013, 5,
4488−4502.
(44) Kuei, B.; Gomez, E. Soft Matter 2017, 13, 49−67.
(45) Fauvell, T. J.; Zheng, T.; Jackson, N. E.; Ratner, M. A.; Yu, L.;
Chen, L. X. Chem. Mater. 2016, 28, 2814−2822.
(46) Braun, C. H.; Schopf, B.; Ngov, C.; Brochon, C.; Hadziioannou,
G.; Crossland, E. J.; Ludwigs, S. Macromol. Rapid Commun. 2011, 32,
813−819.
(47) Amrutha, S. R.; Jayakannan, M. J. Phys. Chem. B 2008, 112,
1119−1129.
(48) Jonkheijm, P.; van Duren, J. K. J.; Kemerink, M.; Janssen, R. A.
J.; Schenning, A. P. H. J.; Meijer, E. W. Macromolecules 2006, 39, 784−
788.
(49) Chen, S. H.; Su, A. C.; Han, S. R.; Chen, S. A.; Lee, Y. Z.
Macromolecules 2004, 37, 181−186.
(50) Traub, M. C.; DuBay, K. H.; Ingle, S. E.; Xhu, X.; Plunkett, K.
N.; et al. J. Phys. Chem. Lett. 2013, 4, 2520−2524.
(51) Shao, B.; Zhu, X.; Plunkett, K. N.; Vanden Bout, D. A. Polym.
Chem. 2017, 8, 1188−1195.
(52) Nakahira, T.; Fan, L.; Boon, C. T.; Fukada, T.; Karato, T.;
Annaka, M.; Yoshikuni, M. Polym. J. 1998, 30, 910−914.
(53) Tian, H.; Lu, Y.; Novak, B. M. J. Am. Chem. Soc. 2004, 126,
4082−4083.
(54) Patten, T. E.; Novak, B. M. J. Am. Chem. Soc. 1996, 118, 1906−
1916.
(81) Wang, D. P.; Yuan, Y.; Mardiyati, Y.; Bubeck, C.; Koynov, K.
Macromolecules 2013, 46, 6217−6224.
(82) Resmi, R.; Amrutha, S. R.; Jayakannan, M. J. Polym. Sci., Part A:
Polym. Chem. 2009, 47, 2631−2646.
(83) Bazan, G. C.; Oldham, W. J.; Lachicotte, R. J.; Tretiak, S.;
Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188−9204.
(84) Wang, J.; Kulago, A.; Browne, W. R.; Feringa, B. L. J. Am. Chem.
Soc. 2010, 132, 4191−4196.
(55) Su, M.; Liu, N.; Wang, Q.; Wang, H. Q.; Yin, J.; Wu, Z. Q.
Macromolecules 2016, 49, 110−119.
(56) Kajitani, T.; Okoshi, K.; Sakurai, S.-I.; Kumaki, J.; Yashima, E. J.
Am. Chem. Soc. 2006, 128, 708−709.
(85) Chen, S. B.; Deng, Y. M.; Chang, X. J.; Barqawi, H.; Schulz, M.;
Binder, W. H. Polym. Chem. 2014, 5, 2891−2900.
K
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX