C O M M U N I C A T I O N S
Scheme 1
preparatively useful, chemoselective entry to seven-membered rings
is provided. Although numerous mechanistic issues have yet to be
established, these studies suggest that nickel carbene intermediates
may be useful mediators of cascade metathesis entries to function-
alized medium rings. We are actively pursuing further developments
in this area.
Acknowledgment. We acknowledge receipt of NIH Grant GM-
57014 and a Johnson and Johnson Focused Giving Award in support
of this research. Prof. Jin Cha and Dr. Bashar Ksebati are thanked
for helpful discussions.
Supporting Information Available: Full experimental details and
copies of NMR spectral data. This material is available free of charge
References
(1) (a) For [4 + 4] reactions: Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc.
1986, 15, 4678. (b) For [5 + 2] reactions: Wender, P. A.; Takahashi, H.;
Witulski, B. J. Am. Chem. Soc. 1995, 117, 4720. (c) For [6 + 2]
reactions: Rigby, J. H.; Henshilwood, J. A. J. Am. Chem. Soc. 1991, 113,
5122. (d) For [6 + 4] reactions: Rigby, J. H.; Ateeq, H. S.; Charles, N.
R.; Cuisiat, S. V.; Ferguson, M. D.; Henshilwood, J. A.; Krueger, A. C.;
Ogbu, C. O.; Short, K. M.; Heeg, M. J. J. Am. Chem. Soc. 1993, 115,
1382. (e) For [4 + 2 + 2] reactions: Evans, P. A.; Robinson, J. E.; Baum,
E. W.; Fazal, A. N. J. Am. Chem. Soc. 2002, 124, 8782. (f) Gilbertson, S.
R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784. (g) For [5 + 2 + 1]
reactions: Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J.
Am. Chem. Soc. 2002, 124, 2876. (h) For [2 + 2 + 2 + 1] reactions:
Ojima, I.; Lee, S.-Y. J. Am. Chem. Soc. 2000, 122, 2385.
(2) Wender, P. A.; Deschamps, N. M.; Gamber, G. G. Angew. Chem., Int.
Ed. 2003, 42, 1853.
(3) (a) Harvey, D. F.; Lund, K. P. J. Am. Chem. Soc. 1991, 113, 5066. (b)
Harvey, D. F.; Grenzer, E. M.; Gantzel, P. K. J. Am. Chem. Soc. 1994,
116, 6719. (c) See also: Herndon, J. W.; Chatterjee, G.; Patel, P. P.;
Matasi, J. J.; Tumer, S. U.; Harp, J. J.; Reid, M. D. J. Am. Chem. Soc.
1991, 113, 7808.
(4) (a) Davies, H. M. L.; McAfee, M. J.; Oldenburg, C. E. M. J. Org. Chem.
1989, 54, 930. (b) Davies, H. M. L.; Doan, B. D. J. Org. Chem. 1999,
64, 8501. (c) Davies, H. M. L.; Calvo, R. L.; Townsend, R. J.; Ren, P.;
Churchill, R. M. J. Org. Chem. 2000, 65, 4261.
(5) Padwa, A.; Krumpe, K. E.; Gareau, Y.; Chiacchio, U. J. Org. Chem. 1991,
56, 2523.
The allyl silane handle installed in the cycloaddition process is
potentially useful in a variety of post-cycloaddition manipulations.
However, in this initial study, we have only examined simple
desilylation. Interestingly, n-Bu4NF-mediated desilylation proceeds
without alkene migration to generate product 3,10a whereas proto-
desilylation of 2a with BF3/HOAc proceeds with allylic transposi-
tion to generate product 4.10b Thus, desilylated products 3 and 4
may be selectively prepared according to the reaction conditions
chosen, although product 4 was prepared as a 3:1 ratio of isomers
favoring the cis isomer.
(6) (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (b) Montgomery, J.
Angew. Chem., Int. Ed. 2004, 43, 3890.
(7) For representative reports of well-characterized nickel carbene complexes,
see: (a) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124,
9976. (b) Gabor, B.; Kru¨ger, C.; Marczinke, B.; Mynott, R.; Wilke, G.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1666. (c) Arduengo, A. J.; Gamper,
S. F.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. 1994, 116, 4391.
(d) Hou, H.; Gantzel, P. K.; Kubiak, C. P. Organometallics 2003, 22,
2817.
(8) For representative reports of reactions that involve incorporation of a nickel
carbene unit into the organic product, see: (a) Barluenga, J.; Barrio, P.;
Lo´pez, L. A.; Toma´s, M.; Garc´ıa-Granda, S.; Alvarez-Ru´a, C. Angew.
Chem., Int. Ed. 2003, 42, 3008. (b) Nakamura, A.; Yoshida, T.; Cowie,
M.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2108. (c) Gai,
Y.; Julia, M.; Verpeaux, J.-N. Synlett 1991, 269. (d) Waterman, R.;
Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350.
(9) For representative reports of nickel-catalyzed processes that involve
N-heterocyclic carbene ligands, see: (a) Herrmann, W. A. Angew. Chem.,
Int. Ed. 2002, 41, 1290. (b) Mahandru, G. M.; Liu, G.; Montgomery, J.
J. Am. Chem. Soc. 2004, 126, 3698. (c) Zuo, G.; Louie, J. Angew. Chem.,
Int. Ed. 2004, 43, 2277. (d) Louie, J.; Gibby, J. E.; Farnworth, M. V.;
Tekavec, T. N. J. Am. Chem. Soc. 2002, 124, 15188. (e) Sato, Y.; Sawaki,
R.; Mori, M. Organometallics 2001, 20, 5510. (f) Dible, B. R.; Sigman,
M. S. J. Am. Chem. Soc. 2003, 125, 872. (g) Blakey, S. B.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2003, 125, 6046.
(10) (a) Hulme, A. N.; Henry, S. S.; Meyers, A. I. J. Org. Chem. 1995, 60,
1265. (b) Kno¨lker, H.-J.; Baum, E.; Graf, R.; Jones, P. G.; Spiess, O.
Angew. Chem., Int. Ed. 1999, 38, 2583.
(11) (a) Korkowski, P. F.; Hoye, T. R.; Rydberg, D. B. J. Am. Chem. Soc.
1988, 110, 2676. (b) Hoye, T. R.; Rehberg, G. M. J. Am. Chem. Soc.
1990, 112, 2841.
(12) Monnier, F.; Castillo, D.; De´rien, S.; Toupet, L.; Dixneuf, P. H. Angew.
Chem., Int. Ed. 2003, 42, 5474.
(13) (a) Wender, P. A.; Filosa, M. P. J. Org. Chem. 1976, 41, 3490. (b) Marino,
J. P.; Browne, L. J. Tetrahedron Lett. 1976, 3245. (c) Piers, E.; Nagakura,
I. Tetrahedron Lett. 1976, 3237. (d) Lee, J.; Kim, H.; Cha, J. K. J. Am.
Chem. Soc. 1995, 117, 9919. (e) Hudlicky, T.; Fan, R.; Reed, J. W.;
Gadamesetti, K. G. Org. React. 1992, 41, 1.
(14) Intermediate 9 is directly analogous to that proposed in nickel-catalyzed
[4 + 2] cycloadditions of alkynes and dienes: (a) Wender, P. A.; Jenkins,
T. E. J. Am. Chem. Soc. 1989, 111, 6432. (b) Wender, P. A.; Smith, T. E.
Tetrahedron 1998, 54, 1255.
The mechanism of this novel cycloaddition process is unclear
at this stage. In analogy to stoichiometric molybdenum carbene-
mediated dienyne cyclizations3,11 and catalytic ruthenium-mediated
cyclizations of enynes,12 the mechanism could involve formation
of a nickel carbene intermediate 5, followed by a metathesis cascade
to generate metallacyclobutane 6. Rearrangement of 6 to 7 would
allow direct production of 2 upon reductive elimination. Alterna-
tively, reductive elimination of 6 to produce 8, followed by Cope
rearrangement, would afford product 2.3-5,13 In a completely distinct
mechanism, oxidative cyclization of nickel(0) with dienyne 1 could
allow production of metallacycloheptadiene 9.14 Carbene insertion
into either metal carbon bond of 9 to generate metallacycle 7 (or
its regioisomer) followed by reductive elimination would afford
product 2. Further study will be directed toward elucidating these
mechanistic issues.
In summary, a novel, nickel-catalyzed [4 + 2 + 1] cycloaddition
of a diazoalkane, diene, and alkyne has been developed, and a
JA046147Y
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11163