Figure 2. (a) Asymmetric radical addition approach to chiral
amines using chiral N-acylhydrazones. (b) Photolysis of Mn2(CO)10
producing alkyl radicals from iodides. (c) Mn-mediated coupling
of a difunctional iodide and hydrazone.9
Figure 1. Retrosynthetic analysis of tubulysins A-F, antimitotic
agents with picomolar potency, revealing R,γ-disubstituted γ-amino
acids as key subgoals.
known to generate alkyl radicals from alkyl halides (Figure
2b),11 and permits coupling of N-acylhydrazones and primary
iodides bearing additional halide functionality (e.g., Figure
2c).9a The functional group tolerance and nonbasic conditions
of this coupling method suggested its potential utility in
synthesis of multifunctional amines such as the tubulysin
γ-amino acids. Our previous studies had not exploited
oxygen-containing iodides or hydrazones, so preparation of
A and B would constitute an important test of the synthetic
versatility of the Mn-mediated coupling reactions.
carboxylate modification of glutamic acid,6c allyl addition
to sulfinimines,6d reaction of enolates with aziridines,6e and
reductive coupling of nitrones with R,â-unsaturated carbonyl
compounds.6f
We envisioned a new, general, and versatile synthesis of
γ-amino acids involving a C-C bond construction approach
to installation of the chiral amine moiety. This plan would
obviate the limitations of naturally occurring R-amino acid
precursors, facilitating preparation of γ-amino acids bearing
unusual functionality or substitution patterns. For versatility,
the ideal method would be applicable to strategic construction
of either the Câ-Cγ or Cγ-Cδ bonds (Figure 1) as desired,
depending on circumstances such as the availability or
reactivity of the proposed precursors, and would be inde-
pendent of the function or configuration of substituents at
the R-position. Here we report application of such strategic
bond constructions for preparation of the γ-amino acid
subunits of tubulysins.
Application of the Mn-mediated coupling to the γ-amino
acid progenitor of tubuvaline required enantiocontrolled
preparation of chiral â-alkoxyhydrazone 4 (Scheme 1).
(7) Reviews of radical additions to imines and related acceptors: (a)
Friestad, G. K. Tetrahedron 2001, 57, 5461-5496. (b) Fallis, A. G.; Brinza,
I. M. Tetrahedron 1997, 53, 17543-17594.
(8) (a) Ueda, M.; Miyabe, H.; Nishimura, A.; Sugino, H.; Naito, T.
Tetrahedron: Asymmetry 2003, 14, 2857-2859. Ueda, M.; Miyabe, H.;
Teramachi, M.; Miyata, O.; Naito, T. J. Chem. Soc., Chem. Commun. 2003,
426-427. Miyabe, H.; Fujii, K.; Naito, T. Org. Biomol. Chem. 2003, 1,
381-390. (b) Bertrand, M.; Feray, L.; Gastaldi, S. Comptes Rend. Acad.
Sci. Paris, Chim. 2002, 5, 623-638. Bertrand, M. P.; Coantic, S.; Feray,
L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000, 56, 3951-3961. (c)
Yamada, K.; Yamamoto, Y.; Maekawa, M.; Tomioka, K. J. Org. Chem.
2004, 69, 1531-1534. Yamada, K.; Yamamoto, Y.; Tomioka, K. Org. Lett.
2003, 5, 1797-1799. Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa, Y.;
Taga, T.; Tomioka, K. Org. Lett. 2002, 4, 3509-3511. (d) Ferna´ndez, M.;
Alonso, R. Org. Lett. 2003, 5, 2461-2464. Torrente, S.; Alonso, R. Org.
Lett. 2001, 3, 1985-1987. (e) Masson, G.; Py, S.; Valle´e, Y. Angew. Chem.,
Int. Ed. 2002, 41, 1772-1775. (f) Alves, M. J.; Fortes, G.; Guimara˜es, E.;
Lemos, A. Synlett 2003, 1403-1406. (g) Liu, X.; Zhu, S.; Wang, S.
Synthesis 2004, 683-691. (h) Singh, N.; Anand, R. D.; Trehan, S.
Tetrahedron Lett. 2004, 45, 2911-2913.
As part of a program to develop asymmetric C-C bond
construction approaches to chiral amines, we have developed
stereoselective intermolecular additions of alkyl radicals to
CdN bonds7,8 using chiral N-acylhydrazones9,10 (Figure 2a).
One approach exploits photolysis of the Mn-Mn bond,
(6) (a) Reetz, M. T.; Griebenow, N.; Goddard, R. J. Chem. Soc., Chem.
Commun. 1995, 1605-1606. Hanessian, S.; Schaum, R. Tetrahedron Lett.
1997, 38, 163-167. Smrcina, M.; Majer, P.; Majerova, E.; Guerassina, T.
A.; Eisenstat, M. A. Tetrahedron 1997, 53, 12867-12874. Loukas, V.;
Noula, C.; Kokotos, G. J. Peptide Sci. 2003, 9, 312-319. (b) Brenner, M.;
Seebach, D. HelV. Chim. Acta 1999, 82, 2365-2379. Enders, D.; Teschner,
P.; Raabe, G.; Runsink, J. Eur. J. Org. Chem. 2001, 4463-4477. (c) El
Marini, A.; Roumestant, M. L.; Viallefont, P.; Razafindramboa, D.; Bonato,
M.; Follett, M. Synthesis 1992, 11, 1104-1108. Dexter, C. S.; Jackson, R.
F. W.; Elliott, J. J. Org. Chem. 1999, 64, 7579-7585. (d) Hua, D. H.;
Miao, S. W.; Chen, J. S.; Iguchi, S. J. Org. Chem. 1991, 56, 4-6. (e)
Vicario, J. L.; Bad´ıa, D.; Carrillo, L. J. Org. Chem. 2001, 66, 5801-5807.
(f) Dagoneau, C.; Tomassini, A.; Denis, J.-N.; Valle´e, Y. Synthesis 2001,
150-154. Riber, D.; Skrydstrup, T. Org. Lett. 2003, 5, 229-231. Masson,
G.; Zeghida, W.; Cividino, P.; Py, S.; Vallee, Y. Synlett 2003, 1527-1529.
(9) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922-
9923. (b) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 123, 8329-
8330.
(10) For chiral Lewis acid control in radical addition to CdN bonds,
see: (a) Friestad, G. K.; Shen, Y.; Ruggles, E. L. Angew. Chem., Int. Ed.
2003, 42, 5061-5063. (b) Halland, N.; Jørgensen, K. A. J. Chem. Soc.,
Perkin Trans. 1 2001, 1290-1295. (c) Miyabe, H.; Ushiro, C.; Ueda, M.;
Yamakawa, K.; Naito, T. J. Org. Chem. 2000, 65, 176-185.
(11) Herrick, R. S.; Herrinton, T. R.; Walker, H. W.; Brown, T. L.
Organometallics 1985, 4, 42. Gilbert, B. C.; Parsons, A. F. J. Chem. Soc.,
Perkin Trans. 2 2002, 367-387. Gilbert, B. C.; Harrison, R. J.; Lindsay,
C. I.; McGrail, P. T.; Parsons, A. F.; Southward, R.; Irvine, D. J.
Macromolecules 2003, 36, 9020-9023. Huther, N.; McGrail, P. T.; Parsons,
A. F. Eur. J. Org. Chem. 2004, 1740-1749.
3250
Org. Lett., Vol. 6, No. 19, 2004