In tr a m olecu la r Nitr on e Cycloa d d ition
Rea ction on Ca r boh yd r a te-Ba sed
P r ecu r sor s: Ap p lica tion in th e Syn th esis of
Sp ir on u cleosid es a n d Sp ir obisn u cleosid es
Kaushik Singha, Atanu Roy, Pradeep K. Dutta,
Subhankar Tripathi, Sk. Sahabuddin,
Basudeb Achari, and Sukhendu B. Mandal*
F IGURE 1. A general scheme for the synthesis of spirocyclic
nucleosides.
Division of Medicinal Chemistry, Indian Institute of
Chemical Biology, J adavpur, Kolkata 700 032, India
et al.9 However, development of newer and versatile
synthetic routes to enantiomerically pure products with
structural variations, starting from the readily available
chiral pool constituted by sugars, remains a relevant
task.
We have recently demonstrated the applicability of
intramolecular nitrone cycloaddition (INC) reaction on
glucose-derived enose-nitrones for enantioselective as
well as enantiodirecting synthesis of carbocyclic nucleo-
sides of varying ring sizes.10 We reasoned that if a C-allyl
as well as an O-allyl group could be introduced at C-3 of
the glucose ring, consecutive INC reactions (Figure 1)
involving the olefins with a C-1 aldehyde and an aldehyde
generated at C-5 through simple functional group ma-
nipulations should lead to optically active and structur-
ally unique spirocyclic nucleosides. The present commu-
nication deals with the results derived from such studies.
Compound 1, generated10c from a D-glucose-derived
substrate through INC reaction of C-5 nitrone with C-3
allyl function, could be converted to the masked aldehyde
2, which in turn afforded the nor-aldehyde 3 via periodate
cleavage. INC reaction of 2 with BnNHOH afforded the
tetracyclic spirocycles 4 (43%) and 5 (27%), and similar
treatment of 3 furnished 6 (65%) and 7 (4%), presumably
through a nonisolable enose-nitrone (Scheme 1). The
gross structures of the products11 were evident from their
mass spectra, which showed an identical molecular ion
peak for 4 and 5 (at m/z 438) and for 6 and 7 (at m/z
408). Further, the stereochemistry for the A/B rings of
the spirocycles, as also for C-7 of 4 and 5, should be the
same as for the corresponding centers in 1. Only those
of the newly formed stereocenters (C/D ring juncture)
remained to be determined. The cis geometry assumed
sbmandal@iicb.res.in
Received December 13, 2003
Abstr a ct: A simple synthesis of chiral spironucleosides and
spirobisnucleosides is described. Intramolecular 1,3-dipolar
nitrone cycloaddition reaction of D-glucose-derived precur-
sors having olefin at C-3 and nitrone at C-5, C-1, or C-2 (in
nor-series) furnished bisisoxazolidinospirocycles 4-7, 11,
and 12 in good yields. Reductive ring opening of the
isoxazolidine moieties in 4-6 followed by construction of a
nucleoside base upon the generated amino groups smoothly
yielded spirobisnucleosides 17 and 18 and spironucleosides
20 and 21.
Synthesis of enantiomerically pure carbocyclic amino
alcohols en route to carbocyclic nucleosides,1-4 many of
which are of interest in search of therapeutic agents for
dreaded diseases such as HIV, HSV, and cancer, remains
a cherished goal of synthetic organic chemists. Since the
discovery of the nucleoside hydantocidin5 possessing a
spirocyclic ring at the anomeric center, the area of
synthetic spirocyclic nucleosides also started to develop.
Besides notable contributions from Miyasaka’s labora-
tory6 and others,7 the field has been enriched by publica-
tions of Paquette’s group8 on the synthesis of nucleosides
bearing a spiro ring juncture at the anomeric center, as
well as of other carbaspironucleosides. Syntheses of 5/5
and 6/5 spironucleosides with unusual heterocycles spiro-
fused to the ribose ring has also been reported by Gasch
(1) (a) Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571.
(b) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.;
Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 10611. (c) Crimmins, M.
T. Tetrahedron 1998, 54, 9229. (d) Huryn, D.; Okabe, M. Chem. Rev.
1992, 92, 1745. (e) Ferrero, M.; Gotor, V. Chem. Rev. 2000, 100, 4319.
(2) (a) Borthwick, A. D.; Crame, A. J .; Exall A. M.; Weingarten, G.
G.; Mahmoudian, M. Tetrahedron Lett. 1995, 36, 6929. (b) Yoshida,
N.; Kamikubo, T.; Ogasawara, K. Tetrahedron Lett. 1998, 39, 4677.
(c) Cowart, M.; Bennett, M. J .; Kerwin, J F., J r. J . Org. Chem. 1999,
64, 2240. (d) Crimmins, M. T.; King, B. W.; Zuercher, W. J .; Choy, A.
L. J . Org. Chem. 2000, 65, 8499. (e) Kuang, R.; Ganguly, A. K.; Chan,
T.-M.; Pramanik, B. N.; Blythin, D. J .; McPhail, A. T.; Saksena, A. K.
Tetrahedron Lett. 2000, 41, 9575. (f) Comin, M. J .; Rodriguez, J . B.
Tetrahedron 2000, 56, 4639.
(3) (a) Gillaizeau, I.; Charamon, S.; Agrofoglio, L. A. Tetrahedron
Lett. 2001, 42, 8817. (b) Ono, M.; Nishimura, K.; Tsubouchi, H.;
Nagaoka Y.; Tomioka, K. J . Org. Chem. 2001, 66, 8199. (c) Choo, H.;
Chong, Y.; Chu, C. K. Org. Lett. 2001, 3, 1471. (d) Santana, L.; Teijeira,
M.; Teran, C.; Uriarte, E.; Vina, D. Synthesis 2001, 10, 1532. (e) Kitade,
Y.; Kozaki, A.; Yatome, C. Tetrahedron Lett. 2001, 42, 433. (f)
Rajappan, V. P.; Schneller, S. W. Tetrahedron 2001, 57, 9049.
(4) (a) Hong, J . H.; Shim, M. J .; Ro, B. O.; Ko, O. H. J . Org. Chem.
2002, 67, 6837. (b) Velcicky, J .; Lex, J .; Schmalz, H. G. Org. Lett. 2002,
4, 565. (c) Moon, H. R.; Kim, H. O.; Kee, K. M.; Chun, M. W.; Kim, J .
H.; J eong, L. S. Org. Lett. 2002, 4, 3501. (d) Kim, H. S.; J acobson, K.
A. Org. Lett. 2003, 5, 1665.
(6) (a) Kittaka, A.; Tanaka, H.; Odanaka, Y.; Ohnuki, K.; Yamaguchi,
K.; Miyasaka, T. J . Org. Chem. 1994, 59, 3636. (b) Kittaka, A.; Tanaka,
H.; Yamada, N.; Miyasaka, T. Tetrahedron Lett. 1996, 37, 2801. (c)
Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.; Yamada, N.; Nakamura,
K. T.; Miyasaka, T. J . Org. Chem. 1999, 64, 7081.
(7) Gimisis, T.; Chatgilialoglu, C. J . Org. Chem. 1996, 61, 1908.
(8) (a) Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.; Kahane, A. L.
Org. Lett. 2001, 3, 4039. (b) Paquette, L. A.; Owen, D. R.; Bibart, R.
T.; Seekamp, C. K. Org. Lett. 2001, 3, 4043. (c) Paquette, L. A.;
Hartung, R. E.; France, D. J . Org. Lett. 2003, 5, 869.
(9) Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J . L.;
Fuentes, J . Tetrahedron: Asymmetry 2001, 12, 1267.
(10) (a) Roy, A.; Patra, R.; Achari, B.; Mandal, S. B. Synlett 1997,
1237. (b) Roy, A.; Chakrabarty, K.; Dutta, P. K.; Bar, N. C.; Basu, N.;
Achari, B.; Mandal, S. B. J . Org. Chem. 1999, 64, 2304. (c) Bar, N. C.;
Roy, A.; Achari, B.; Mandal, S. B. J . Org. Chem. 1997, 62, 8948. (d)
Patra, R.; Bar, N. C.; Roy, A.; Achari, B.; Ghoshal, N.; Mandal, S. B.
Tetrahedron 1996, 52, 11265.
(11) The alternative bridged ring structures could be easily excluded
from NMR evidence (absence of upfield signals for the methylene
bridge).
(5) Haruama, H.; Takayama, T.; Kinoshita, T.; Kondo, M.; Nakajima,
M.; Haneishi, T. J . Chem. Soc., Perkin Trans. 1 1991, 1637.
10.1021/jo035813v CCC: $27.50 © 2004 American Chemical Society
Published on Web 08/21/2004
J . Org. Chem. 2004, 69, 6507-6510
6507