Selective Reductions of the Carbonyl Compounds
Letters in Organic Chemistry, 2011, Vol. 8, No. 10
695
Radivoy, G.; Yus, M. Dehalogenation of organic halides using the
NiCl2•2H2O-Li-DTBB (cat.) combination. Tetrahedron, 1999, 55
(14), 4441-4444; (c) Alonso, F.; Riente, P.; Yus, M. Hydrogen-
transfer reduction of carbonyl compounds promoted by nickel
nanoparticles. Tetrahedron, 2008, 64, 1847-1852; (d) Alonso, F.;
Riente, P.; Yus, M. Hydrogen-transfer reduction of carbonyl
compounds catalysed by nickel nanoparticles. Tetrahedron Lett.,
2008, 49, 1939-1942; (e) Alonso, F.; Riente, P.; Yus M. Nickel
nanoparticles in hydrogen transfer reactions. Acc. Chem. Res.,
2011, 44 (5), 379.
(a) Boldrini, G.P.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-
Ronchi, A. A new route to an active form of nickel. Transfer
hydrogenation of alkenes and carbonyl compounds with 2-
propanol. J. Org. Chem., 1985, 50, 3082-3086; (b) Mäki-Arvela,
P.; Hajek, J.; Salmi, T.; Murzin, D.Y. Chemoselective
hydrogenation of carbonyl compounds over heterogeneous
catalysts. Appl. Catal. A: Gen., 2005, 292, 1-49; (c) Mebane, R.C.;
Mansfield, A.J. Transfer hydrogenation of aldehydes with 2-
propanol and Raney nickel. Synth. Commun. 2005, 35, 3083-3086;
(d) Mebane, R.C.; Holte, K.L.; Gross, B.H. Transfer
Hydrogenation of Ketones with 2-Propanol and Raney® Nickel.
Synth. Commun., 2007, 37 (16), 2787-2791.
Compound 4b: RT 28.399 min; MS: m/z (%) = 176 (36)
[M+], 161 (100) [M+-CH3], 132 (30) [C10H12
]
+
Reduction Reactions in the Series A
In a 25 mL volumetric flask, there is prepared a stock
solution consisting of 0.2 g (2 mmoles) cyclohexanone, 0.6 g
(5 mmoles) acetophenone,
dimethylacetophenone, 1.3
1
g
g
(6.7 mmoles) 2,4-
(8 mmoles) 2,4,6-
[5]
trimethylacetophenone and dioxane up to the mark.
In a two-necked flask fitted with condenser, there is
added 10 mL of the stock solution of ketones, containing
approximately 5 mmoles of reducible compounds and 540
mg Ni-Al alloy (10 mmoles aluminum). 2 mL 20% aq.
NaOH are dripped over the mixture and stirred for 30
minutes and then 2 mL of reaction mixture are taken as
sample. There is added 2 mL 20% aq. NaOH over the
reaction mixture in the flask, the stirring continues for 90
minutes before the second sample has been taken. The two
samples are processed as follows: they are diluted with 50
mL water, are extracted with 3x10 mL CH2Cl2. The extract
is washed with water up to neutral pH, then it is dried over
MgSO4 and it is evaporated at low temperature. The samples
are analyzed by GC-MS.
[6]
[7]
Alonso, F.; Beletskaya, I.P.; Yus, M. Metal-mediated reductive
hydrodehalogenation of organic halides. Chem. Rev., 2002, 102,
4009-4091.
(a) Fouilloux, P. The nature of Raney nickel, its adsorbed hydrogen
and its catalytic activity for hydrogenation reactions. Appl. Catal.,
1983, 8, 1-42; (b) Mitoma, Y.; Nagashima, S.; Ishimoto, K.;
Kanda, T.; Simion, A.; Simion, C.; Tashiro, M. Reduction using
Raney alloys and zinc powder in water. Application toward
deuteriation. Jpn. J. Deuterium Sci., 2000, 9 (1), 1-13; (c) Hu, H.;
Xie, F.; Pei, Y.; Qiao, M.; Yan, S.; He, H.; Fan, K.; Li, H.; Zong,
B.; Zhang, X. Skeletal Ni catalysts prepared from Ni-Al alloys
rapidly quenched at different rates: Texture, structure and catalytic
The reduction reactions in the series B and C are
performed by the same procedure as in series A.
performance
in
chemoselective
hydrogenation
of
2-
ethylanthraquinone. J. Catal., 2006, 237 (1), 143-151; (d) Liu, G.-
B.; Zhao, H.-Y.; Zhu, J.-D.; He, H.-J.; Yang, H.-J.; Thiemann, T.;
Tashiro, H.; Tashiro, M. A New Method for the Reduction of
Benzophenones with Raney Ni-Al Alloy in Water. Synth.
Commun., 2008, 38 (10).
ACKNOWLEDGEMENT
Financial support from the CNCSIS is gratefully
acknowledged.
[8]
(a) Guo, H.; Ding, K. Reduction of 1,1'-binaphthyls to octahydro-
1,1'-binaphthyl derivatives with Raney Ni-Al alloy in aqueous
solution. Tetrahedron Lett., 2000, 41 (51), 10061-10064; (b) Liu,
S.; Xiao, J. Toward green catalytic synthesis - Transition metal-
catalyzed reactions in non-conventional media. J. Mol. Catal. A-
Chem., 2007, 270 (1-43); (c) Liu, G.-B.; Tashiro, M.; Thiemann, T.
REFERENCES
[1]
(a) Zeifert, B.H.; Salmones, J.; Hernandez, J.A.; Reynoso, R.;
Navab, N.; Cabanas-Moreno, J.G.; Aguilar-Rios, G.
Physicochemical and catalytic properties of iron-promoted Raney-
nickel catalysts obtained by mechanical alloying. Catal. Lett.,
1999, 63, 161-165; (b) Watanabe, N.; Ramos, A.Y.; Ferreira, J.A.;
Tolentino, H.C. In: Structural and electronic changes of Ni-Raney
catalyst in the deactivation process, Proceedings of the 12th
Congresso Brasileiro de Catálise, Angra dos Reis, Brasil,
September 16-19, 2003; pp 393-396.
(a) Nakagawa, S.; Tai, A.; Okuyama, T.; Sugimura, T. Enantio-
differentiating hydrogenation of aromatic-ketoesters over tartaric
acid-modified Raney nickel. Top. Catal., 2000, 13, 187-189; (b)
Humblot, V.; Haq, S.; Muryn, C.; Raval, R. (R,R)-Tartaric acid on
Ni(110): the dynamic nature of chiral adsorption motifs. J. Catal.,
2004, 228 (1), 130-140; (c) Osawa, T.; Nakagawa, Y.; Ando, M.;
Harada, T.; Takayasu, O. Studies of co-modifier and carboxylic
acid for the enantio-differentiating hydrogenation of 2-octanone
over a tartaric acid in situ modified nickel catalyst. J. Mol. Catal.
A- Chem., 2009, 302 (1-2), 43-47.
(a) Dahlborg, U.; Bao, C.M.; Calvo-Dahlborg, M.; Devred, F.;
Nieuwenhuys, B.E. Structure and microstructure of leached Raney-
type Al–Ni powders. J. Mater. Sci., 2009, 44, 4653-4660; (b)
Devred, F.; Gieske, A.H.; Adkins, N.; Dahlborg, U.; Bao, C.M.;
Calvo-Dahlborg, M.; Bakker, J.W.; Nieuwenhuys, B.E. Influence
of phase composition and particle size of atomised Ni-Al alloy
samples on the catalytic performance of Raney-type nickel
catalysts. Appl. Catal. A-Gen. 2009, 356, 154-161.
A
facile method for the dechlorination of mono- and
dichlorobiphenyls using Raney Ni-Al alloy in dilute aqueous
solutions of alkali hydroxides or alkali metal carbonates.
Tetrahedron, 2009, 65 (12), 2497-2505; (d) Liu, G.-B.; Zhao, H.Y.;
Dai, L.; Thiemann, T. A convenient method for the reductive
degradation of mono-, di-, and tribromodiphenyl ethers,
tetrabromo- and tetrachlorobisphenol A with Raney Ni-Al alloy.
ARKIVOC, 2009, xiii, 211-226.
[2]
[9]
Keefer, L.K.; Lunn, G. Nickel-Aluminium Alloy as a Reducing
Agent. Chem. Rev., 1989, 89 (3), 459 - 502.
[10]
(a) Tsukinoki, T.; Kanda, T.; Liu, G.-B.; Tsuzuki, H.; Tashiro, M.
Organic reaction in water. Part 3:A facile method for reduction of
aromatic rings using a Raney Ni-Al alloy in dilute aqueous alkaline
solution under mild conditions. Tetrahedron Lett., 2000, 41 (31),
5865-5868; (b) Liu, B.; Cai, T. Selective Hydrogenation Of
Crotonaldehyde Over Raney Cobalt Catalysts Modified With
Heteropolyacid Salts. React. Kinet. Catal. Lett., 2003, 80 (1), 21-
26; (c) Ishimoto, K.; Mitoma, Y.; Nagashima, S.; Tashiro, H.;
Prakash, S.; Olah, G.A.; Tashiro, M. Reduction of carbonyl groups
to the corresponding methylenes with Ni-Al in water. Chem.
Commun., 2003, 514-515; (d) Zhang, J.-L.; Wang, Y.
Reinvestigation of the Reduction of 1-Naphthol Using Ni-Al Alloy.
Chinese J. Org. Chem., 2008, 28 (4), 723-726.
[3]
[4]
[11]
Adkins, H.; Krsek, G. Comparison of nickel catalyst in the
hydrogenation of naphthol. J. Am. Chem. Soc., 1948, 70, 412-414.
(a) Alonso, F.; Yus, M. The NiCl2•2H2O-Li-Arene combination as
reducing system. Part 3. Reduction of carbonyl compounds and
imines. Tetrahedron, 1998, 54, 1921-1928; (b) Alonso, F.;