Article
The molecular mass of esterase was found to be 25 ( 1 kDa as
J. Agric. Food Chem., Vol. 58, No. 17, 2010 9715
(14) Adkins, A. Degradation of the phenoxy acid herbicide diclofop-
methyl by Sphingomonas paucimobilis isolated from a Canadian
prairie soil. J. Ind. Microbiol. Biotechnol. 1999, 23, 332–335.
(15) Liang, B.; Lu, P.; Li, H. H.; Li, R.; Li, S. P.; Huang, X. Biodegrada-
tion of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil.
Chemosphere 2009, 77, 1614–1619.
(16) Ferrari, A.; Brusa, T.; Rutili, A.; Canzi, E.; Biavati, B. Isolation and
characterization of Methanobrevibacter oralis sp. nov. Curr. Micro-
biol. 1994, 29, 7–12.
(17) Holt, J. G.; Krieg, N. R.; Sneath, P. H. A.; Staley, J. T.; Williams,
S. T. Bergey’s Manual of Determinative Bacteriology, 9th ed.;
Williams and Wilkins: Baltimore, MD, 1994.
(18) Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in
Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; Wiley:
Chichester, U.K., 1991; pp 371-375.
(19) Kumar, B.; Tamura, K.; Jakobsen, I. B.; Nei, M. MEGA: Molecular
Evolutionary Genetics Analysis Software; Arizona State University:
Tempe, AZ, 2001.
(20) Bradford, M. M. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of protein-
dye binding. Anal. Biochem. 1976, 72, 248–254.
(21) Waterborg, J. H.; Matthews, H. R. The electrophoretic elution of pro-
teins from polyacrylamide gels. Methods Mol. Biol. 1994, 32, 169–175.
(22) Laemmli, U. K. Cleavage of structural proteins during the assembly
of the head of bacteriophage T4. Nature 1970, 227, 680–685.
(23) Abraham, W. R.; Stroempl, C.; Meyer, H.; Lindholst, S.; Moore,
E. R. B.; Christ, R.; Vancanneyt, M.; Tindall, B. J.; Bennasar, A.;
Smit, J.; Tesar, M. Phylogeny and polyphasic taxonomy of Caulo-
bacter species. Proposal of Maricaulis gen. nov. with Maricaulis
maris (Poindexter) comb. nov. as the type species, and emended
description of the genera Brevundimonas and Caulobacter. Int. J.
Syst. Bacteriol. 1999, 49, 1053–1073.
estimated by SDS-PAGE (Figure 6). The optimum pH and
temperature for the enzyme were 7.0 and 20 °C, respectively.
Measurement of esterase activity using lactofen concentrations
ranging from 0.1 to 100 μM indicated that the Km and Vmax of the
enzyme were 0.81 μM and 1.26 nmol min-1 mg-1, respectively.
At present, many compound-degrading esterases have been
studied. Esterase purified from Gordonia sp. strain MTCC 4818,
which could utilize a number of phthalate esters as sole source of
carbon and energy, is involved in the hydrolysis of butyl benzyl
phthalate (26). An enzyme hydrolyzing ethylene glycol dibenzoate
was purified from Aspergillus nomius HS-1 with a monomeric
structure, of which the molecular mass was about 60000 (27). Three
sulfonylurea herbicide pyrazosulfuron-ethyl degrading bacteria
could produce extracellular carboxyesterase, which catalyzed the
rapid de-esterification of p-nitrophenyl butyrate to p-nitrophe-
nol (28). Pesticide pyrethroid-degrading esterases have been purified
from Bacillus cereus SM3, Aspergillus niger ZD11, and Klebsiella sp.
ZD112 (29-31). However, there is no report on the purification of
esterase from pure strain, which could degrade diphenyl ether
herbicides. In this paper, a lactofen esterase was purified from strain
LY-2. To our knowledge, this is the first lactofen esterase purified to
homogeneity from pure strain, and further genetic studies may lead
to the discovery of novel genes involved in the future.
LITERATURE CITED
(1) Matringe, M.; Camadro, J. M.; Labbe, P.; Scalla, R. Protoporphyr-
inogen oxidase as a molecular target for diphenyl ether herbicides.
Biochem. J. 1989, 260, 231–235.
(2) Witkowski, D. A.; Halling, B. P. Inhibition of plant protoporphyr-
inogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol.
1989, 90, 1239–1242.
(3) Graham, M. Y. The Diphenylether herbicide lactofen induces cell
death and expression of defense-related genes in soybean. Plant
Physiol. 2005, 139, 1784–1794.
(4) Kidd, H.; James, D. R. The Agrochemicals Handbook, 3rd ed.; Royal
Society of Chemistry Information Services: Cambridge, U.K., 1991.
(5) Wauchope, R. D.; Buttler, T. M.; Hornsby, A. G.; Augustijn-
Beckers, P. W. M.; Burt, J. P. SCS/ARS/CES pesticide properties
database for environmental decision making. Rev. Environ. Contam.
Toxicol. 1992, 123, 1–155.
(6) Ahrens, W. H. Herbicide Handbook, 7th ed.; Weed Science Society of
America: Champaign, IL, 1994.
(7) U.S. Environmental Protection Agency. Pesticide Environmental
Fate One Line Summary: Lactofen; Environmental Fate and Effects
Division: Washington, DC, 1993.
(8) U.S. Environmental Protection Agency. File: Lactofen, Integrated
Risk Information System (IRIS). National Library of Medicine “Tox-
line” Database, 1995.
(9) Diao, J. L.; Xu, P.; Wang, P.; Lu, D. H.; Lu, Y. L.; Zhou, Z. Q.
Enantioselective degradation in sediment and aquatic toxicity to
daphnia magna of the herbicide lactofen enantiomers. J. Agric. Food
Chem. 2010, 58 (4), 2439–2445.
(24) Deshpande, N. M.; Sarnaik, S. S.; Paranjpe, S. A.; Kanekar, P. P.
Optimization of dimethoate degradation by Brevundimonas sp. MCM
B-427 using factorial design: studies on interactive effects of environ-
mental factors. World J. Microbiol. Biotechnol. 2004, 20, 455–462.
(25) Smejkal, C. W.; Seymour, F. A.; Burton, S. K.; Lappin-Scott, H. M.
Characterisation of bacterial cultures enriched on the chlorophenox-
yalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and
4-(4-chloro-2-methylphenoxy) butyric acid. J. Ind. Microbiol. Bio-
technol. 2003, 30, 561–567.
(26) Chatterjee, S.; Dutta, T. K. Metabolism of butyl benzyl phthalate by
Gordonia sp. strain MTCC 4818. Biochem. Biophys. Res. Commun.
2003, 309, 36–43.
(27) Uchida, H.; Kurakata, Y.; Sawamura, H.; Inamura, N.; Kotani, T.;
Uwajima, T. Purification and properties of an esterase from Asper-
gillus nomius HS-1 degrading ethylene glycol dibenzoate. FEMS
Microbiol. Lett. 2003, 223, 123–127.
(28) Xu, J.; Li, X. S.; Xu, Y. J.; Qiu, L. H.; Pan, C. P. Biodegradation of
pyrazosulfuron-ethyl by three strains of bacteria isolated from
contaminated soils. Chemosphere 2009, 74, 682–687.
(29) Malone, S. E.; Maule, A.; Smith, A. R. W. Purification and prelimin-
ary characterization of permethrinase from a pyrethroid-transforming
strain of Bacillus cereus. Appl. Environ. Microbiol. 1993, 59, 2007–2013.
(30) Liang, W. Q.; Wang, Z. Y.; Li, H.; Wu, P. C.; Hu, J. M.; Luo, N.;
Cao, L. X.; Liu, Y. H. Purification and characterization of a novel
pyrethroid hydrolase from Aspergillus niger ZD11. J. Agric. Food
Chem. 2005, 53, 7415–7420.
(31) Wu, P. C.; Liu, Y. H.; Wang, Z. Y.; Zhang, X. Y.; Li, H.; Liang,
W. Q.; Luo, N.; Hu, J. M.; Lu, J. Q.; Luan, T. G.; Cao, L. X.
Molecular cloning, purification, and biochemical characterization of
a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain
ZD112. J. Agric. Food Chem. 2006, 54, 836–842.
(10) Schmidt, S.; Wittich, R. M.; Erdmann, D.; Wilkes, H.; Francke, W.;
Fortnagel, P. Biodegradation of diphenyl ether and its monohalo-
genated derivatives by Sphingomonas sp. strain SS3. Appl. Environ.
Microbiol. 1992, 58, 2744–2750.
(11) Chakraborty, S. K.; Bhattacharyya, A.; Chowdhury, A. Degrada-
tion of oxyfluorfen by Azotobacter chroococcum (Beijerink). Bull.
Environ. Contam. Toxicol. 2002, 9, 203–209.
(12) Keum, Y. S.; Lee, Y. J.; Kim, J. H. Metabolism of nitrodiphenyl
ether herbicides by dioxin-degrading bacterium Sphingomonas wit-
tichii RW1. J. Agric. Food Chem. 2008, 56, 9146–9151.
(13) Schauer, F.; Henning, K.; Pscheidl, H.; Wittich, R. M.; Fortnagel,
P.; Wilkes, H.; Sinnwell, V.; Francke, W. Biotransformation of
diphenylether by the yeast Trichosporon beigelii SBUG 752. Biode-
gradation 1995, 6, 173–180.
Received for review May 24, 2010. Revised manuscript received July 29,
2010. Accepted August 3, 2010. This work was funded by the Chinese
National Natural Science Fund (30900044), the Social Development
Program Fund of Jiangsu Province (BS2007056), and the Fund for the
Doctoral Program of Higher Education (20090097120031).