6944
T. Esumi et al. / Tetrahedron Letters 45 (2004) 6941–6945
OMe OMe
BBr3, CH2Cl2
10 mol% Pd(PPh3)4, 3 equiv. K3PO4
Isoplagiochin D (1)
4b
-78 °C rt., 8 hr
DMF (10-2 M), 80 C, 12 hr
°
41%
89%
MeO
OMe
3a
Scheme 4. Macrocyclization of 18 and completion of total synthesis of isoplagiochin D (1).
3. For review: Keseru, G. M.; Nogradi, M. Nat. Prod. Rep.,
1995, 69–75.
4. Iyoda, M.; Sakaitani, M.; Otsuka, H.; Oda, M. Tetrahe-
dron Lett. 1985, 26, 4777–4780.
5. Kodama, M.; Shiobara, Y.; Sumitomo, H.; Matsumura,
K.; Tsukamoto, M.; Harada, C. J. Org. Chem. 1988, 53,
72–77.
desired product 4b was increased up to 56–63% yield to-
gether with the generation of bis(pinacolate) 19 (Table 2,
entries 5 and 6). In the shorter reaction time (1.5h) the
desired product 4b was obtained in 63% yield with start-
ing material 4a in 17% yield. (Table 2, entry 7) Eventu-
ally, the pinacolborate 4b was obtained in 76% yield
after repeating the same reaction three times. However,
no generation of cyclized product was observed under
these conditions.15
6. Keseru, G. M.; Mezey-Vandor, G.; Nogradi, M.; Vermes,
¨
B.; Kajtar-Peredy, M. Tetrahedron 1992, 48, 913–922.
7. (a) Fukuyama, Y.; Yaso, H.; Nakamura, K.; Kodama, M.
Tetrahedron Lett. 1999, 40, 105–108; (b) Fukuyama, Y.;
Yaso, H.; Mori, T.; Takahashi, H.; Minami, H. Hetero-
cycles 2001, 54, 259–274.
8. (a) Kosugi, M.; Shimizu, K.; Ohtani, T.; Migita, T. Chem.
Lett. 1981, 829–830; (b) Kelly, T. R.; Li, Q.; Bhushan, V.
Tetrahedron Lett. 1990, 31, 161–164.
9. The intramolecular cross-coupling of 4c under the previ-
ous Stille–Kelly conditions gave the cyclized product 3b in
9% yield.
10. Hashimoto, T.; Kanayama, S.; Kan, Y.; Tori, M.;
Asakawa, Y. Chem. Lett. 1996, 741–742.
Now, we address the issue of the final macrocyclization
in this synthesis. In this case, the intramolecular Suzuki–
Miyaura reaction of 18 with 10mol% of Pd(PPh3)4 in
13c,16
DMF in the presence of 3equiv K3PO4
proceeded
smoothly and afforded the expected macrocyclic product
21 in 41% yield. Finally, Removal of all methyl groups
in 21 with BBr3 led to the total synthesis of isoplagiochin
D (1) (Scheme 4), which was identical in all the spectra
data17 (1H NMR, 13C NMR, EIMS, IR) with the natu-
ral product.
11. Eicher, T.; Fey, S.; Puhl, W.; Buchel, E.; Speicher, A. Eur.
J. Org. Chem. 1998, 877–888.
¨
12. (a) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem.
Soc. 1984, 106, 4630–4634; (b) McKean, D. R.; Parrinello,
G.; Renaldo, A. F.; Stille, J. K. J. Org. Chem. 1987, 52,
422–424; (c) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc.
1987, 109, 813–817; (d) Roth, G. P.; Farina, V. Tetrahe-
dron Lett. 1995, 36, 2191–2194; (e) Kosugi, M.; Fugami,
K. In Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley–Interscience: New York, 2002; pp
263–283.
13. (a) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun.
1981, 11, 513–519; (b) Watanabe, T.; Miyaura, N.; Suzuki,
A. Synlett 1992, 207–210; (c) Oh-e, T.; Miyaura, N.;
Suzuki, A. J. Org. Chem. 1993, 58, 2201–2208; (d) Suzuki,
A. In Organopalladium Chemistry for Organic Synthesis;
Negishi, E., Ed.; Wiley-Interscience: New York, 2002; pp
249–262.
In conclusion, we could improve the yield of palladium-
catalyzed macrocyclization between two aryl units in the
synthesis of cyclic bis(bibenzyls) natural products more
significantly than the previously used tandem Stille–Kelly
protocol7 by utilizing intramolecular Suzuki–Miyaura
reaction, and thereby achieve the efficient synthesis of
isoplagiochin D (1) in 10.6% overall yield for the 11
steps. Further application of this methodology is cur-
rently underway in our laboratory in an attempt to syn-
thesize riccarrdin A and cavicularin, the most complex
cyclic bis(bibenzyls).18
Acknowledgements
14. (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem.
1995, 60, 7508–7510; (b) Ishiyama, T.; Itoh, Y.; Kitano,
T.; Miyaura, N. Tetrahedron Lett. 1997, 38, 3447–3450.
15. It is well known that use of the weak bases such as AcOK
does not afford the cross-coupling products. See Ref. 14a.
16. First, we applied the same conditions for the macrocy-
clization as used in the model study. However, the reaction
did not occur.
This work is supported by Grant-in-Aids (16510172 and
1670023) for Scientific Research from the Ministry of
Education, Culture, Sports, Science, and Technology,
Japan.
1
References and notes
17. Spectra data of isoplagiochin D (1): H NMR (300MHz,
acetone-d6): d 2.78–3.08 (8H, m), 6.39 (1H, d, J = 2.2Hz),
6.50 (1H, d, J = 2.2Hz), 6.71(1H, dd, J = 2.5, 8.2Hz),
6.74 (1H, d, J = 2.5Hz), 6.75 (1H, dd, J = 2.5, 8.0Hz),
6.78 (1H, d, J = 8.2Hz), 6.84 (1H, d, J = 2.7Hz), 6.89 (1H,
d, J = 8.2Hz), 6.99 (1H, d, J = 8.0Hz), 7.00 (1H, dd,
J = 2.2, 8.2Hz), 7.07 (1H, d, J = 7.7Hz), 7.13 (1H, dd,
1. Asakawa, Y. In Progress in the Chemistry of Organic
Natural Products; Hertz, W., Grisebach, H., Kirby, G. W.,
Eds.; Springer: Wien, New York, 1995; Vol. 65, pp 5–562.
2. Asakawa, Y. Rev. Latitinoam. Quim. 1984, 109, 109–
114.