W. Zhang et al. / Tetrahedron Letters 46 (2005) 6087–6090
6089
(entries 1–3). Under the same reaction condition, how-
ever, good enantioselectivity (Table 1, entry 4, 93% ee)
was achieved by the use of ligand (R,S,S)-9 bearing a
bulky chiral amine. In contrast, the use of its diastereo-
mer (R,R,R)-9 resulted in only 10% ee. These results
indicate that a stereochemically matched ligand struc-
ture is fundamental to induce high enantioselectivities.
Our investigation is in agreement with what were
reported in other copper/phosphoramidite catalytic
systems.1b,3b,i Having identified (R,S,S)-9 as the best
ligand, further enhancement of enantioselectivity can
be achieved by lowering the reaction temperature. When
the reaction was carried out at room temperature
(25 °C), the ee dropped dramatically to 75%. On the
other hand, at ꢀ20 °C and ꢀ30 °C, the enantioselectiv-
ity can be improved to 94% ee and 96% ee, respectively
(Table 1, entries 7 and 8). Another tunable factor is the
copper salt, which also plays an essential role accounting
for high catalytic activity and enantioselectivity.1b
Recent mechanistic studies via EPR experiments,12
provided unequivocal evidence in favor of the earlier
assumption3d,g that the real catalytic species is the in situ
reduced CuI complex. Therefore, both CuI and CuII
salts can be successful in this reaction. Although
(CuOTf)2Ætoluene led to much lower ee than its divalent
counterpart (compare Table 1, entries 7 and 9, 49% ee
vs 94% ee), copper carboxylate, both CuOAc and
Cu(OAc)2ÆH2O, gave excellent enantioselectivities
(Table 1, entries 10 and 11). High ee was also achieved
when Cu(MeCN)4ClO4 was used (Table 1, entry 12).
However, the use of Cu(MeCN)4PF6 is detrimental,
leading to only 52% ee (Table 1, entry 13). This dra-
matic influence of copper salt on enantioselectivity
demonstrated that although Cu(OTf)2 is the most
commonly used precursor, some other copper salts,
especially Cu carboxylates, can be more effective.1b,3g
It is noted that with reduced catalyst loading, no
remarkable decrease in ee was observed. For example,
when 1% and 0.1% CuOAc were used, the ee is 98%
and 96%, respectively (Table 1, entries 14 and 15). In
addition to toluene, some other solvents have been
tested in this catalytic reaction. Although ethereal
solvents such as ether and THF lead to slightly higher
eeꢀs than CH2Cl2 and EtOAc, toluene is still the best
solvent (Table 1, entries 16–19).
The other two cyclic enones 12 and 14 were also tested in
this catalytic system using ligand (R,S,S)-9. When 12
was used, 98% ee was achieved. However, side reac-
tions1a dominate in the case of 14, resulting in low yield
and enantioselectivity (Scheme 3).
In conclusion, new monodentate spirocyclic phosphor-
amidite ligands were prepared from chiral spirocyclic
diol (R)-5. Among them ligand (R,S,S)-9 with a C2-
symmetric chiral secondary amine moiety can lead to
up to 99% ee in copper-catalyzed conjugate addition
of diethylzinc to cyclic enones. Further application of
these rigid ligands for other asymmetric catalytic reac-
tions will be studied.
Acknowledgment
This work was supported by NIH-GM.
References and notes
1. (a) Krause, N.; Hoffmann-Ro¨der, A. Synthesis 2001, 2,
171; (b) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem.
2002, 3221; (c) Feringa, B. L. Acc. Chem. Res. 2000, 33,
346.
2. Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92,
771.
3. (a) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L.
Angew. Chem., Int. Ed. 1996, 35, 2374; (b) Feringa, B. L.;
Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H. M.
Angew. Chem., Int. Ed. 1997, 36, 2620; (c) Naasz, R.;
Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa, B. L. J.
Am. Chem. Soc. 1999, 121, 1104; (d) Arnold, L. A.; Imbos,
R.; Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa,
B. L. Tetrahedron 2000, 56, 2865; (e) Arnold, L. A.; Naasz,
R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc.
´
2001, 123, 5841; (f) Pena, D.; Lopez, F.; Harutyunyan, S.
˜
R.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2004,
1836; (g) Alexakis, A.; Benhaim, C.; Rosset, S.; Humam,
M. J. Am. Chem. Soc. 2002, 124, 5262; (h) Hua, Z.;
Vassar, V. C.; Choi, H.; Ojima, I. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5411; (i) Zhou, H.; Wang, W.-H.; Fu,
Y.; Xie, J.-H.; Shi, W.-J.; Wang, L.-X.; Zhou, Q.-L. J.
Org. Chem. 2003, 68, 1582.
4. Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L.
Org. Lett. 1999, 1, 623.
5. (a) Duursma, A.; Minnaard, A. J.; Feringa, B. L.
Tetrahedron 2002, 58, 5773; (b) Duursma, A.; Minnaard,
A. J.; Feringa, B. L. J. Am. Chem. Soc. 2003, 125, 3700; (c)
Alexakis, A.; Polet, D.; Rosset, S.; March, S. J. Org.
Chem. 2004, 69, 5660; (d) Choi, H.; Hua, Z.; Ojima, I.
Org. Lett. 2004, 6, 2689; (e) Rimkus, A.; Sewald, N. Org.
Lett. 2003, 5, 79; (f) Rimkus, A.; Sewald, N. Synthesis
2004, 1, 135.
6. Pineschi, M.; Moro, F. D.; Gini, F.; Minnaard, A. J.;
Feringa, B. L. Chem. Commun. 2004, 1244.
7. Schuppan, J.; Minnaard, A. J.; Feringa, B. L. Chem.
Commun. 2004, 792.
O
O
CuOAc (3 mol%), (R,S,S)-9 (6 mol%)
ZnEt2 (1.5 equiv), toluene, -20°C
13
12
Yield 94%, ee 98%
O
O
Cu(MeCN)4ClO4 (3 mol%),(R,S,S)-9 (6 mol%)
8. Watanabe, T.; Knopfel, T. F.; Carreira, E. M. Org. Lett.
2003, 5, 4557.
9. Wu, S.; Zhang, W.; Zhang, Z.; Zhang, X. Org. Lett. 2004,
6, 3565.
ZnEt2 (1.5 equiv), toluene, -20°C
14
15
Yield 8%, ee 66%
Scheme 3. Copper-catalyzed enantioselective conjugate addition of
diethylzinc to cyclohept-2-enone 12 and cyclopent-2-enone 14 with
spirocyclic ligand (R,S,S)-9.
10. van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman,
M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries,
A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.;