C O M M U N I C A T I O N S
Table 1. Propylene Oxide/CO2 Copolymerization Resultsa
b
time
(h)
temp
(°C)
pressure
(psi)
TOF
selectivityc
PPC:PC
M
PDI
n
entry
catalyst
(mol PO/(mol Zn‚h))
(×10-3 d
)
(M /M )
w
n
1e
2
3
4
5
6
7
8
9
Zn-glutarate
40
8
8
8
8
2
8
2
2
2
2
50
25
50
25
25
25
25
25
25
40
10
758
300
300
300
300
300
300
100
500
300
300
3.4
3
50
47
26
212
0
235
138
215
37
NRf
143
2.4
[(BDI-1)ZnOAc]
[(BDI-2)ZnOAc]
[(BDI-2)ZnOAc]
[(BDI-3)ZnOAc]
[(BDI-4)ZnOAc]
[(BDI-5)ZnOAc]
[(BDI-4)ZnOAc]
[(BDI-4)ZnOAc]
[(BDI-4)ZnOAc]
[(BDI-4)ZnOAc]
<1:100
<1:100
85:15
72:28
87:13
NAg
75:25
93:7
20:80
93:7
NAg
NAg
43.3
21.9
35.9
NAg
36.7
30.6
16.6
10.0
NAg
NAg
1.09
1.10
1.11
NAg
1.13
1.15
1.27
1.16
10
11
a All of the polymerizations were carried out in neat PO (4.9 mL) with [monomer]/[Zn] ) 2000 unless otherwise noted. b Turnover frequency of PO to
products. c Based on the 1H NMR integration of PPC and PC resonances at the end of the reaction. d Determined by gel permeation chromatography relative
to polystyrene standards in tetrahydrofuran. e Reference 12. f Not reported. g Not applicable.
complexes crystallize to alleviate steric repulsions, positioning the
isopropyl substituted aryl groups anti to each other.
the Packard and Beckman Foundations. This work made use of
CCMR Shared Experimental Facilities, supported through the NSF
MRSEC program (DMR-0079992).
Subtle changes in the ligand architecture drastically affect the
catalyst activity for PPC formation (Table 1, entries 4-7).19 Shift-
ing the CF3 group from the side of the diethyl aniline to the side of
the diisopropyl aniline yields a nearly 10-fold increase in activity.
On the other hand, placing both a CN group and a CF3 group on
the backbone of the ligand results in complete deactivation of the
complex, yielding neither polymer nor cyclic carbonate. The
intriguing sensitivity of this reaction to steric and electronic
perturbations of the BDI ligand is currently being studied and further
exploited.
As anticipated, varying the reaction temperature and CO2 pressure
affects both the selectivity and the activity of the superior catalyst,
[(BDI-4)ZnOAc]. As seen in entries 6, 8, and 9, increasing the
pressure of CO2 from 100 to 500 psi suppresses cyclic carbonate
formation, increasing the selectivity for polymer from 75 to 93%
while moderately decreasing the catalyst activity for PPC formation.
This suggests that PC is formed by a backbiting reaction of the
metal alkoxide intermediate (Scheme 1). Entries 6, 10, and 11 show
that lowering the reaction temperature dramatically increases
selectivity for polymer formation, although catalyst activity for PPC
formation is optimum at 25 °C.
All of the isolated polymers have narrow polydispersity indices
and Mn values close to the predicted values, hallmarks of living
polymerizations. The 1H NMR spectra of all PPCs produced show
>99% carbonate linkages, and the 13C NMR spectra of the PPCs
show head/head, tail/tail, and head/tail linkages in the ratio 23:23:
54. Such a microstructure is consistent with a near regiorandom
ring-opening of PO and is similar to polymers made using zinc
glutarate (∼60% head/tail linkages).20 Notably, the Tg of the
polymer (38 °C) is the same as that for PPC made using zinc
glutarate.12
In conclusion, we report several [(BDI)ZnOAc] complexes that
are active for PO/CO2 copolymerization. The activity observed for
[(BDI-4)ZnOAc] is significantly higher than any other reported
catalyst. The alternating polymers produced are regioirregular and
exhibit narrow molecular weight distributions. Future efforts are
directed toward understanding the mechanism of catalysis and
controlling the regio- and stereochemistry of the copolymerization.
Supporting Information Available: Synthesis and characterization
of complexes and polymers (PDF). This material is available free of
References
(1) Arakawa, H.; et al. Chem. ReV. 2001, 101, 953-996.
(2) Leitner, W. Coord. Chem. ReV. 1996, 153, 257-284.
(3) For reviews on epoxide/CO2 polymerizations, see: (a) Kuran, W. Prog.
Polym. Sci. 1998, 23, 919-992. (b) Super, M.; Beckman, E. Trends Polym.
Sci. 1997, 5, 236-240. (c) Darensbourg, D. J.; Holtcamp, M. W. Coord.
Chem. ReV. 1996, 153, 155-174.
(4) Darensbourg, D. J.; Wildeson, J. R.; Yarbrough, J. C.; Reibenspies, J. H.
J. Am. Chem. Soc. 2000, 122, 12487-12496.
(5) Mang, S.; Cooper, A. I.; Colclough, M. E.; Chauhan, N.; Holmes, A. B.
Macromolecules 2000, 33, 303-308.
(6) Super, M.; Berluche, E.; Costello, C.; Beckman, E. Macromolecules 1997,
30, 368-372.
(7) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998,
120, 11018-11019.
(8) Cheng, M.; Moore, D.; Reczek, J.; Chamberlain, B.; Lobkovsky, E. B.;
Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
(9) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Angew. Chem.,
Int. Ed. 2002, 41, 2599-2602.
(10) Inoue, S.; Koinuma, H.; Tsurata, T. Makromol. Chem. 1969, 130, 210-
220.
(11) Inoue, S.; Koinuma, H.; Tsurata, T. Polym. Lett. 1969, 7, 287-292.
(12) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. J. Polym. Sci., Polym. Chem.
1999, 37, 1863-1876.
(13) Soga, K.; Imai, E.; Hattori, I. Polym. J. 1981, 13, 407-410.
(14) Although homogeneous catalysts for PO/CO2 copolymerization have been
described, they exhibit low polymerization activity (<1 TO/h). (a) Aida,
T.; Ishikawa, M.; Inoue, S. Macromolecules 1986, 19, 8-13. (b) Jung, J.
H.; Ree, M.; Chang, T. J. Polym. Sci., Polym. Chem. 1999, 37, 3329-
3336. (c) Kuran, W.; Listos, T.; Abramczyk, M.; Dawidek, A. J.
Macromol. Sci., Pure Appl. Chem. 1998, A35, 427-437. (d) Sarbu, T.;
Styranec, T.; Beckman, E. J. Nature 2000, 405, 165-168.
(15) Despite the fact that catalysts for poly(propylene carbonate) synthesis are
elusive, excellent catalysts for thermodynamically more stable propylene
carbonate are available. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc.
2001, 123, 11498-11499 and references therein.
(16) Chisholm has recently reported (BDI-1)ZnOtBu couples PO and CO2 to
propylene carbonate in unspecified yield. Chisholm, M. H.; Gallucci, J.;
Phomphrai, K. Inorg. Chem. 2002, 41, 2785-2794.
(17) Darensbourg has previously reported a similar effect using both zinc and
chromium catalysts (Darensbourg, D. J.; Yarbrough, J. C. J. Am. Chem.
Soc. 2002, 124, 6335-6342 and ref 4).
(18) See Supporting Information.
(19) Interestingly, these complexes do not homopolymerize propylene oxide
(24 h, 25 °C).
(20) Chisholm, M. H.; Navarro-Llobet, D.; Zhou, Z. Macromolecules 2002,
35, 6494-6504.
Acknowledgment. G.W.C. gratefully acknowledges an NSF
CAREER Award, support from Eastman Chemical, and grants from
JA028071G
9
J. AM. CHEM. SOC. VOL. 124, NO. 48, 2002 14285