H. Ouchi et al. / Tetrahedron Letters 45 (2004) 7053–7056
7055
1999, 38, 750–770; (c) Zechel, D. L.; Withers, S. G. Acc.
Chem. Res. 2000, 33, 11–18.
2. (a) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W.
J. Tetrahedron: Asymmetry 2000, 11, 1645–1680; (b) Alper,
J. Science 2001, 291, 2338–2343.
3. (a) Bols, M. Acc. Chem. Res. 1998, 31, 1–8; (b) Zechel, D.
L.; Boraston, A. B.; Gloster, T.; Boraston, C. M.;
Macdonald, J. M.; Tilbrook, M. G.; Stick, R. V.; Davies,
G. J. J. Am. Chem. Soc. 2003, 125, 14313–14323.
4. (a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup,
T.; Lundt, I.; Bols, M. Angew. Chem., Int. Ed. Engl. 1994,
33, 1778–1779; (b) Ichikawa, M.; Igarashi, Y.; Ichikawa,
Y. Tetrahedron Lett. 1995, 36, 1767–1770; (c) Ichikawa,
Y.; Igarashi, Y. Tetrahedron Lett. 1995, 36, 4585–4586; (d)
Hansen, A.; Tagmose, T. M.; Bols, M. Chem. Commun.
1996, 2649–2650; (e) Nishimura, Y.; Satoh, T.; Kudo, T.;
Kondo, S.; Takeuchi, T. Bioorg. Med. Chem. 1996, 4,
91–96; (f) Igarashi, Y.; Ichikawa, M.; Ichikawa, Y.
Tetrahedron Lett. 1996, 37, 2707–2708; (g) Igarashi, Y.;
Ichikawa, M.; Ichikawa, Y. Bioorg. Med. Chem. Lett.
1996, 6, 553–558; (h) Bols, M.; Hazell, R. G.; Thomsen, Ib
B. Chem. Eur. J. 1997, 3, 940–947; (i) Ichikawa, Y.;
Igarashi, Y.; Ichikawa, M.; Suhara, Y. J. Am. Chem. Soc.
1998, 120, 3007–3018; (j) Nishimura, Y.; Shitara, E.;
Adachi, H.; Toyoshima, M.; Nakajima, M.; Okami, Y.;
Takeuchi, T. J. Org. Chem. 2000, 65, 2–11; (k) Shitara, E.;
Nishimura, Y.; Kojima, F.; Takeuchi, T. Bioorg. Med.
Chem. 2000, 8, 343–352; (l) Søhoel, H.; Liang, X.; Bols, M.
J. Chem. Soc., Perkin Trans. 1, 2001, 1584–1585; (m)
Jakobsen, P.; Lundbeck, J. M.; Kristiansen, M.; Breinholt,
J.; Demuth, H.; Pawlas, J.; Candela, M. P. T.; Andersen,
B.; Westergaard, N.; Lundgren, K.; Asano, N. Bioorg.
Med. Chem. 2001, 9, 733–744; (n) Liu, H.; Liang, X.;
Scheme 4. Reagents and conditions: (a) (CH2@CH)2CuCNLi2
(5equiv), BF3ÆOEt2 (2equiv)/Et2O, ꢀ78°C, 2h; (b) Me2CuCNLi2
(5equiv), BF3ÆOEt2 (2equiv)/Et2O, ꢀ78°C; (c) (i) cat. OsO4, NaIO4/
50% EtOH, rt, overnight; (ii) NaBH4/50% EtOH, rt, 1h; (iii) 10% HCl/
dioxane, reflux, 1h; (d) (i) 9-BBN/THF, rt, 6h; (ii) H2O2, 3mol/L
NaOH/THF, rt, 1h; (iii) 10% HCl/dioxane, reflux, 1h; (e) 10% HCl/
dioxane, reflux, 1h.
Figure 3.
yield. Thus the first synthesis of 2 and 3 was performed
(Scheme 4).
Søhoel, H. H.; Bulow, A.; Bols, M. J. Am. Chem. Soc.
¨
2001, 123, 5116–5117.
Enantiomers 11–13 of 1–3 were also prepared starting
from (ꢀ)-4, following the same procedure as above
(Fig. 3).
5. For 1-azasugar syntheses, see Refs. 4 and: (a) Kazmaier,
U.; Schneider, C. Tetrahedron Lett. 1998, 39, 817–818; (b)
Kim, Y. J.; Ichikawa, M.; Ichikawa, Y. J. Org. Chem.
2000, 65, 2599–2602; (c) Mehta, G.; Mohal, N. Tetrahe-
dron Lett. 2000, 41, 5747–5751; (d) Liang, X.; Lohse, A.;
Bols, M. J. Org. Chem. 2000, 65, 7432–7437; (e) Pandey,
G.; Kapur, M. Tetrahedron Lett. 2000, 41, 8821–8824; (f)
Zhao, G.; Deo, U. C.; Ganem, B. Org. Lett. 2001, 3,
201–203; (g) Pandey, G.; Kapur, M. Synthesis 2001,
1263–1267; (h) Andersch, J.; Bols, M. Chem. Eur. J. 2001,
7, 3744–3747; (i) Best, W. M.; MacDonald, J. M.; Skelton,
B. W.; Stick, R. V.; Tilbrook, D. M. G.; White, A. H. Can.
J. Chem. 2002, 80, 857–865; (j) Guanti, G.; Riva, R.
Tetrahedron Lett. 2003, 44, 357–360; (k) Pandey, G.;
Kapur, M.; Khan, M. I.; Gaikwad, S. M. Org. Biomol.
Chem. 2003, 1, 3321–3326.
In summary, an efficient synthesis of isofagomine (1),
homoisofagomine (2), 50-deoxyisofagomine (3), and
enantiomers 11–13 was achieved in 44–50% overall
yields from readily obtainable chiral N-Boc-5-hydroxy-
3-piperidene (4). The reaction employed epoxidation
into a double bond and a regioselective epoxide ring
opening reaction with ꢁhigher orderꢀ cuprates. To our
knowledge our route to isofagomine (1) is shorter and
more efficient than the other reported syntheses.5 This
synthetic route permits the preparation of substantional
amounts of 1-azasugars having a glucose configuration
and would be suitable for further studies of such com-
pounds as glycosidase inhibitors.
6. (a) Herders, C.; Schiffer, T. Tetrahedron 1996, 52,
14745–14756; (b) Desai, V. N.; Saha, N. N.; Dhavale, D.
´
D. Chem. Commun. 1999, 1719–1720; (c) Szolcsanyi, P.;
Gracza, T.; Koman, M.; Prønayova, N.; Liptaj, T. Chem.
´
´
Commun. 2000, 471–472; (d) Szolcsanyi, P.; Gracza, T.;
´
Acknowledgements
Koman, M.; Prønayova, N.; Liptaj, T. Tetrahedron:
Asymmetry 2000, 11, 2579–2597; (e) Saha, N. N.; Desai,
V. N.; Dhavale, D. D. Tetrahedron 2001, 57, 39–46; (f)
Patil, N. T.; Tilekar, J. N.; Dhavale, D. D. J. Org. Chem.
2001, 66, 1065–1074; (g) Achmatowicz, M.; Hegedus, L. S.
J. Org. Chem. 2004, 69, 2229–2234.
This work was supported by Grant-in-Aid for Scientific
Research on Priority Areas (A) ꢁExploitation of Multi-
Element Cyclic Moleculesꢀ from the Ministry of Educa-
tion, Culture, Science, Sports and Technology of Japan
and Takeda Science Foundation (to H.O.).
7. (a) Di, J.; Rajanikanth, B.; Szarek, W. A. J. Chem. Soc.,
Perkin Trans. 1, 1992, 2151–2152; (b) Defoin, A.; Sarazin,
H.; Streith, J. Helv. Chim. Acta 1996, 79, 560–567; (c)
Dhavale, D. D.; Saha, N. N.; Desai, V. N. J. Org. Chem.
1997, 62, 7482–7484; (d) Pistia, G.; Hollingsworth, R. I.
Carbohydr. Res. 2000, 328, 467–472; (e) Bordier, A.;
Compain, P.; Martin, O. R.; Ikeda, K.; Asano, N.
References and notes
1. (a) Sinnott, M. L. Chem. Rev. 1990, 90, 1171–1202; (b)
Heightman, T. D.; Vasella, A. T. Angew. Chem., Int. Ed.