Communication
hanna, Eur. J. Org. Chem. 2015, 1525–1532; f) Y. S. Chun, K. Y. Ryu, J. H.
Shin, S.-g. Lee, Org. Biomol. Chem. 2011, 9, 1317–1319; g) J. H. Kim, S. Y.
Choi, J. Bouffard, S.-g. Lee, J. Org. Chem. 2014, 79, 9253–9261.
[2] Y. S. Chun, K. K. Lee, Y. O. Ko, H. Shin, S.-g. Lee, Chem. Commun. 2008,
5098–5100.
the indium metal to generate InBr3, and the Lewis acid further
activates the nitrile (C) for the nucleophilic attack of the indium-
enolate B, which leads to the formation of the products.
[3] Y. O. Ko, Y. S. Chun, C.-L. Park, Y. Kim, H. Shin, S. Ahn, J. Hong, S.-g. Lee,
Org. Biomol. Chem. 2009, 7, 1132–1136.
[4] a) S. Kumar, A. A. Sawant, R. P. Chikhale, K. Karanjai, A. Thomas, J. Org.
Chem. 2016, 81, 1645–1653; b) Y. S. Chun, J. H. Lee, J. H. Kim, Y. O. Ko,
S.-g. Lee, Org. Lett. 2011, 13, 6390–6393.
Conclusions
With the results presented herein, we have been able to identify
mild reaction conditions for the successful application of α-
bromo-ꢀ-keto esters in indium metal/indium trichloride medi-
ated Blaise-type reactions with nitriles. A broad scope of the
reaction concerning different nitriles and various α-bromo-ꢀ-
keto esters could be demonstrated. A number of interesting
products was obtained, which open the way to explore promis-
ing follow-up reactions. These results justify the extra step to
generate the brominated keto ester compared to similar trans-
formations with strong Lewis acids because not all functional
groups will tolerate harsh reaction conditions.
[5] a) Y. S. Chun, Y. O. Ko, H. Shin, S.-g. Lee, Org. Lett. 2009, 11, 3414–3417;
b) Y. S. Chun, K. Y. Ryu, Y. O. Ko, J. Y. Hong, J. Hong, H. Shin, S. Lee, J.
Org. Chem. 2009, 74, 7556–7558; c) J. H. Kim, J. Bouffard, S. Lee, Angew.
Chem. Int. Ed. 2014, 53, 6435–6438; Angew. Chem. 2014, 126, 6553–6556;
d) J. H. Kim, S.-g. Lee, Org. Lett. 2011, 13, 1350–1353; e) Z. Xuan, J. H.
Kim, S.-g. Lee, J. Org. Chem. 2015, 80, 7824–7829; f) J. H. Kim, Y. S. Chun,
S.-g. Lee, J. Org. Chem. 2013, 78, 11483–11493.
[6] a) Z. Xuan, D. J. Jung, H. J. Jeon, S.-g. Lee, J. Org. Chem. 2016, 81, 10094–
10098. See also b) J. H. Kim, H. Shin, S.-g. Lee, J. Org. Chem. 2012, 77,
1560–1565; c) J. H. Kim, S.-g. Lee, Synthesis 2012, 44, 1464–1476; d) J. H.
Kim, Y. S. Chun, H. Shin, S.-g. Lee, Synthesis 2012, 44, 1809–1817; e) Y. S.
Chun, J. H. Kim, S. Y. Choi, Y. O. Ko, S.-g. Lee, Org. Lett. 2012, 14, 6358–
6361; f) Y. S. Chun, Z. Xuan, J. H. Kim, S.-g. Lee, Org. Lett. 2013, 15, 3162–
3165; g) M.-N. Zhao, H. Liang, Z.-H. Ren, Z.-H. Guan, Adv. Synth. Catal.
2013, 355, 221–226.
Experimental Section
[7] Y. He, X. Zhang, X. Fan, Chem. Commun. 2014, 50, 5641–5643.
[8] E. Babaoglu, K. Harms, G. Hilt, Synlett 2016, 27, 1820–1823.
[9] a) S. Pei, C. Xue, L. Hai, Y. Wu, RSC Adv. 2014, 4, 38055–38058; b) L. Tang,
D. Zhang-Negrerie, Y. Du, K. Zhao, Synthesis 2014, 46, 1621–1629.
[10] For selected examples, see: a) Z. Li, U. K. Sharma, Z. Liu, N. Sharma, J. N.
Harvey, E. V. Van der Eycken, Eur. J. Org. Chem. 2015, 3957–3962; b) P. R.
Krishna, E. R. Sekhar, Adv. Synth. Catal. 2008, 350, 2871–2876. For reviews,
see: c) F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, Curr. Org. Chem.
2003, 7, 1661–1689; d) B. C. Ranu, Eur. J. Org. Chem. 2000, 2347–2356.
[11] For recent reviews, see: a) Y.-S. Yang, S.-W. Wang, Y. Long, Curr. Org. Chem.
2016, 20, 2865–2880; b) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H. Xu, T.-P.
Loh, Chem. Rev. 2013, 113, 271–401; c) U. Schneider, S. Kobayashi, Acc.
Chem. Res. 2012, 45, 1331–1344. For recent applications, see: d) Y. H.
Chen, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 7648–7651; Angew.
Chem. 2008, 120, 7760; e) Y. H. Chen, M. Sun, P. Knochel, Angew. Chem.
Int. Ed. 2009, 48, 2236–2229; Angew. Chem. 2009, 121, 2270.
[12] K. Inoue, A. Sawada, I. Shibata, A. Baba, J. Am. Chem. Soc. 2002, 124,
906–907.
CCDC 1555178 (for 5a), 1555179 (for Z-7a) contain the supplemen-
Supporting Information (see footnote on the first page of this
article): Experimental procedures for the synthesis of starting mate-
rials, reaction protocols, analytical data and NMR spectra of previ-
ously unknown compounds.
Keywords: Blaise reaction · Synthetic methods · Enamines ·
Indium · Lewis acids
[1] a) J. J. Li, Name reactions: a collection of detailed mechanisms and syn-
thetic applications, 3rd expanded ed., Springer, 2006, pp. 59–60; b) L.
Kürti, B. Czakó, Strategic applications of named reactions in organic syn-
thesis, 1st ed., Elsevier, 2005, p. 374; c) J. H. Kim, Y. O. Ko, J. Bouffard, S.-
g. Lee, Chem. Soc. Rev. 2015, 44, 2489–2507; d) H. S. P. Rao, S. Rafi, K.
Padmavathy, Tetrahedron 2008, 64, 8037–8043; e) H. S. P. Rao, N. Mut-
Received: June 19, 2017
Eur. J. Org. Chem. 2017, 4543–4547
4547
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim