ponents of the outer plasma membrane and as such are involved
in many (patho)physiological processes, including intercellular
recognition, signaling processes, and interactions with path-
ogens.14–28 The biosynthesis of 4 occurs at the outer membrane
of the Golgi apparatus where GCS is membrane bound.
Catabolism of 4 is effected in the lysosomes where the enzyme
glucocerebrosidase (GBA1) assisted by activator protein saposin
C, cleaves the glycosidic bond in 4.29 There is also a second
enzymatic activity that is capable of cleaving this glycosidic
bond about which we reported in 1993.30,31 Although the exact
function of this membrane-bound enzyme, located at the plasma
membrane, is still unknown, it has recently been identified by
us and Yildiz and co-workers as ꢀ-glucosidase 2 (GBA2).32,33
During our research focussing on the development of
selective and potent inhibitors of the three enzymes involved
in glucosylceramide metabolism (GCS, GBA1, and GBA2)30,32,34
we found N-[5-(adamantan-1-yl-methoxy)-pentyl]-1-deoxynojir-
imycin (5) to be a remarkably potent inhibitor of glucosylce-
ramide biosynthesis (100-fold more potent than 3 in inhibiting
GCS; 3: IC50 ) 25–50 µM; 5: IC50 ) 200 nM in our assay).
Besides a potential application of 5 in the treatment of Gaucher’s
disease and related sphingolipidoses,35 the role of glycosphin-
golipids in many other (patho)biological processes points
towards a wider range of applications. Recently, we showed
that inhibition of GCS through oral dosage of compound 5 to
ob/ob mice, which is a type II diabetes model, downregulates
glycosphingolipid biosynthesis and restores insulin receptor
sensitivity.36 We have also found that administration of 5 to
mice with hapten-induced ulcerative colitis resulted in beneficial
antiinflammatory responses.23 The crucial role of GCS at the
root of glycosphingolipid biosynthesis and its role in these
pathological processes make it an interesting drug target and
thereby GCS inhibitor 5 a promising therapeutic lead.
For potential clinical development we needed access to a
large supply of compound 5. Consequently, a study was started
to develop an efficient chemical synthesis of 5, suitable for
preparation of kilogram amounts in a miniplant. In this report
we describe the development and optimization of the synthetic
route for compound 5 from its initial synthesis in an academic
research laboratory to the successfully implemented final
synthetic route in a cGMP miniplant.
Results and Discussion
The first synthesis of compound 5 was reported by us in
1998, where it was part of a library of lipophilic iminosugars
generated to produce a specific inhibitor for GBA2.30 The
strategy for its synthesis then was to first prepare two building
blocks, 1-deoxynojirimycin (1) and 5-(adamantan-1-yl-meth-
oxy)-pentanal (17) and condense these via a reductive amination
to provide 5. In this synthesis, 1 was derived from commercially
available 2,3,4,5-tetra-O-benzyl-D-glucopyranose (6) by trans-
formation of its lactone 7 to lactam intermediate 11, which could
be further reduced and deprotected to provide 1 in 29% yield
over seven steps (Scheme 1).30,37,38 Aldehyde 17 was obtained
from commercially available glutaric dialdehyde39 in five steps
and 2% overall yield. Finally, reductive amination of 1 and 17
provided 60 mg of 5 in 50% yield. Although this route
successfully produced 5, we deemed it unsuitable for larger-
scale synthesis of 5. The main objections to this route were the
low overall yield in the synthesis of 5 and the need for several
column chromatography purifications. The larger quantities
(∼100 g) of 5 that were needed at that time for investigations
into its biological applications23,32,36,40 prompted us to search
for alternate procedures for the production of 5.
(14) Hanley, K.; Jiang, Y.; Holleran, W. M.; Elias, P. M.; Williams, M. L.;
Feingold, K. R. J. Lipid Res. 1997, 38, 576–584.
(15) Holleran, W. M.; Takagi, Y.; Feingold, K. R.; Elias, P. M. Clin. Res.
1992, 40, A443–A443.
(16) Kabayama, K.; Sato, T.; Kitamura, F.; Uemura, S.; Kang, B. W.;
Igarashi, Y.; Inokuchi, J. Glycobiology 2005, 15, 21–29.
(17) Lloyd-Evans, E.; Pelled, D.; Riebeling, C.; Bodennec, J.; de-Morgan,
A.; Waller, H.; Schiffmann, R.; Futerman, A. H. J. Biol. Chem. 2003,
278, 23594–23599.
(18) Lucci, A.; Cho, W. I.; Han, T. Y.; Giuliano, A. E.; Morton, D. L.;
Cabot, M. C. Anticancer Res. 1998, 18, 475–480.
(19) Luft, F. C. J. Mol. Med. 1998, 76, 723–724.
(20) Morjani, H.; Aouali, N.; Belhoussine, R.; Veldman, R. J.; Levade,
T.; Manfait, M. Int. J. Cancer 2001, 94, 157–165.
(21) Radin, N. S. Neurochem. Res. 1994, 19, 533–540.
(22) Schwarz, A.; Futerman, A. H. J. Neurosci. 1997, 17, 2929–2938.
(23) Shen, C.; Bullens, D.; Kasran, A.; Maerten, P.; Boon, L.; Aerts, J.;
van Assche, G.; Geboes, K.; Rutgeerts, P.; Ceuppens, J. L. Int.
Immunopharmacol. 2004, 4, 939–951.
(24) Tagami, S.; Inokuchi, J.; Kabayama, K.; Yoshimura, H.; Kitamura,
F.; Uemura, S.; Ogawa, C.; Ishii, A.; Saito, M.; Ohtsuka, Y.; Sakaue,
S.; Igarashi, Y. J. Biol. Chem. 2002, 277, 3085–3092.
(25) van Meer, G.; Wolthoorn, J.; Degroote, S. Philos. Trans. R. Soc.
London, Ser. B 2003, 358, 869–873.
(26) Warnock, D. E.; Lutz, M. S.; Blackburn, W. A.; Young, W. W.;
Baenziger, J. U. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2708–2712.
(27) Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck,
S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J. L.; Werth, N.;
Sandhoff, R.; Sandhoff, K.; Proia, R. L. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 3445–3449.
Development of an alternative route commenced with
changing the starting material for the synthesis of 17 to 1,5-
pentanediol (18; Scheme 2). Transformation of 18 into 17 now
started according to a literature procedure41 with successive
monotosylation (19), Swern oxidation (20) and protection of
the resulting aldehyde (20) as the 1,3-dioxolane acetal to
(28) Yegneswaran, S.; Deguchi, H.; Griffin, J. H. J. Biol. Chem. 2003,
278, 14614–14621.
(29) Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. 1999, 38, 1532–1568.
(30) Overkleeft, H. S.; Renkema, G. H.; Neele, J.; Vianello, P.; Hung, I. O.;
Strijland, A.; van der Burg, A. M.; Koomen, G. J.; Pandit, U. K.;
Aerts, J. M. F. G. J. Biol. Chem. 1998, 273, 26522–26527.
(31) van Weely, S.; Brandsma, M.; Strijland, A.; Tager, J. M.; Aerts, J.
Biochim. Biophys. Acta 1993, 1181, 55–62.
(36) Aerts, J. M.; Ottenhoff, R.; Powlson, A. S.; Grefhorst, A.; van Eijk,
M.; Dubbelhuis, P. F.; Aten, J.; Kuipers, F.; Serlie, M. J.; Wennekes,
T.; Sethi, J. K.; O’Rahilly, S.; Overkleeft, H. S. Diabetes 2007, 56,
1341–1349.
(32) Boot, R. G.; Verhoek, M.; Donker-Koopman, W.; Strijland, A.; van
Marle, J.; Overkleeft, H. S.; Wennekes, T.; Aerts, J. M. F. G. J. Biol.
Chem. 2007, 282, 1305–1312.
(33) Yildiz, Y.; Matern, H.; Thompson, B.; Allegood, J. C.; Warren, R. L.;
Ramirez, D. M. O.; Hammer, R. E.; Hamra, F. K.; Matern, S.; Russell,
D. W. J. Clin. InVest. 2006, 116, 2985–2994.
(37) Overkleeft, H. S.; van Wiltenburg, J.; Pandit, U. K. Tetrahedron Lett.
1993, 34, 2527–2528.
(38) Overkleeft, H. S.; van Wiltenburg, J.; Pandit, U. K. Tetrahedron 1994,
50, 4215–4224.
(34) Wennekes, T.; van den Berg, R. J. B. H. N.; Donker, W.; van der
Marel, G. A.; Strijland, A.; Aerts, J. M. F. G.; Overkleeft, H. S. J.
Org. Chem. 2007, 72, 1088–1097.
(39) Wanner, M. J.; Koomen, G. J. J. Org. Chem. 1995, 60, 5634–5637.
(40) Bussink, A. P.; van Swieten, P. F.; Ghauharali, K.; Scheij, S.; van
Eijk, M.; Wennekes, T.; van der Marel, G. A.; Boot, R. G.; Aerts,
J. M.; Overkleeft, H. S. J. Lipid Res. 2007, 48, 1417–1421.
(41) Borjesson, L.; Welch, C. J. Tetrahedron 1992, 48, 6325–6334.
(35) Platt, F. M.; Neises, G. R.; Reinkensmeier, G.; Townsend, M. J.; Perry,
V. H.; Proia, R. L.; Winchester, B.; Dwek, R. A.; Butters, T. D. Science
1997, 276, 428–431.
Vol. 12, No. 3, 2008 / Organic Process Research & Development
•
415