10.1002/anie.202010958
Angewandte Chemie International Edition
COMMUNICATION
K. Mishra, Y. H. Jung, S. J. Chung, I. S. Kim, Org. Lett. 2019, 21,
6488–6493.
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP)
[12] a) M. Makosza, J. Winiarski, Acc. Chem. Res. 1987, 20, 282–289; b) M.
Makosza, Pure Appl. Chem. 1997, 69, 559–564; c) M. Makosza, J.
Goliński, S. Ostrowski, A. Rykowski, A. B. Sahasrabudhe, Chem. Ber.
1991, 124, 577–585.
(Nos.
2019R1A4A2001451,
2020R1A2C3005357
and
2020M3A9I2081693). An early preprint of this work appeared on
Research Square.[21]
[13] a) M. Kitano, N. Ohashi, Synth. Commun. 2000, 30, 4247–4254; b) P.
Haiss, K.-P. Zeller, Org. Biomol. Chem. 2011, 9, 7748–7754; c) R. A.
Hartz, V. T. Ahuja, W. D. Schmitz, T. F. Molski, G. K. Mattson, N. J.
Lodge, J. J. Bronson, J. E. Macor, Bioorg. Med. Chem. Lett. 2010, 20,
1890–1894; d) H. Metzger, H. König, K. Seelert, Tetrahedron Lett. 1964,
15, 867–868; e) V. J. Traynelis, J. V. McSweeney, J. Org. Chem. 1966,
31, 243–247; f) P. Haiss, K.-P. Zeller, Eur. J. Org. Chem. 2011, 2011,
295–301; g) D. Antoniak, M. Barbasiewicz, Org. Lett. 2019, 21, 9320–
9325; h) G. A. Russell, S. A. Weiner, J. Org. Chem. 1966, 31, 248–251.
[14] a) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1962, 84, 3782–
3783; b) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87,
1353–1364; c) C. R. Johnson, Acc. Chem. Res. 1973, 6, 341–347.
[15] a) A.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341–
2372; b) E. M. McGarrigle, E. L. Myers, O. Illa, M. A. Shaw, S. L.
Riches, V. K. Aggarwal, Chem. Rev. 2007, 107, 5841–5883; c) X.-L.
Sun, Y. Tang, Acc. Chem. Res. 2008, 41, 937–948; d) C. Zhu, Y. Ding,
L.-W. Ye, Org. Biomol. Chem. 2015, 13, 2530–2536.
Keywords: Alkylation • C–H functionalization • Methylation • N-
Heterocycles • Sulfur ylides.
[1]
[2]
a) P. A. Jones, D. Takai, Science 2001, 293, 1068–1070; b) H. Sasaki,
Y. Matsui, Nat. Rev. Genet. 2008, 9, 129–140.
a) J. S. Finer-Moore, D. V. Santi, R. M. Stroud, Biochemistry 2003, 42,
248–256; b) T. V. Mishanina, E. M. Koehn, A. Kohen, Bioorg. Chem.
2012, 43, 37–43.
[3]
[4]
[5]
L. Zhang, X. Ding, J. Cui, H. Xu, J. Chen, Y.-N. Gong, L. Hu, Y. Zhou, J.
Ge, Q. Lu, L. Liu, S. Chen, F. Shao, Nature 2012, 481, 204–208.
C. S. Leung, S. S. F. Leung, J. Tirado-Rives, W. L. Jorgensen, J. Med.
Chem. 2012, 55, 4489–4500.
a) J. C. Lewis, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41,
1013–1025; b) Y. Nakao, Synthesis 2011, 20, 3209–3219; c) S. Pan, T.
Shibata, ACS Catal. 2013, 3, 704–712.
[6]
a) J. Azuaje, C. Carbajales, M. González-Gómez, A. Coelho, O.
Caamaño, H. Gutiérrez-de-Terán, E. Sotelo, Future Med. Chem. 2015,
38, 1373–1380; b) R. Ramesh, M. T. Bovino, Y. Zeng, J. Aubé, J. Org.
Chem. 2019, 84, 3647–3651; c) K. Motohashi, K. Inaba, S. Fuse, T. Doi,
M. Izumikawa, S. T. Khan, M. Takagi, T. Takahashi, K. Shin-ya, J. Nat.
Prod. 2011, 74, 1630–1635; d) H. S. Abbas, A. R. Al-Marhabi, S. I.
Eissa, Y. A. Ammare, Bioorg. Med. Chem. 2015, 23, 6560–6572; e) H.
Yuan, X. Li, X. Qu, L. Sun, W. Xu, W. Tang, Med. Chem. Res. 2009, 18,
671–682.
[16] a) R. J. Paxton, R. J. K. Taylor, Synlett 2007, 4, 633–637; b) M. G.
Edwards, R. J. Paxton, D. S. Pugh, A. C. Whitwood, R. J. K. Taylor,
Synthesis 2008, 20, 3279–3288; c) T. Sone, A. Yamaguchi, S.
Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2008, 130, 10078–
10079; d) M. A. Marsini, J. T. Reeves, J.-N. Desrosiers, M. A. Herbage,
J. Savoie, Z. Li, K. R. Fandrick, C. A. Sader, B. McKibben, D. A. Gao, J.
Cui, N. C. Gonnella, H. Lee, X. Wei, F. Roschangar, B. Z. Lu, C. H.
Senanayake, Org. Lett. 2015, 17, 5614–5617; e) J. Lee, D. Ko, H. Park,
E. J. Yoo, Chem. Sci. 2020, 11, 1672–1676; f) R. Zhou, X. Deng, J.
Zheng, Q. Sheng, X. Sun, Y. Tang, Chin. J. Chem. 2011, 29, 995–
1000; g) W. Ding, Y. Zhang, A. Yu, L. Zhang, X. Meng, J. Org. Chem.
2018, 83, 13821–13833.
[7]
[8]
a) G. A. Molander, P. E. Gormisky, J. Org. Chem. 2008, 73, 7481–
7485; b) G. A. Price, A. Hassan, N. Chandrasoma, A. R. Bogdan, S. W.
Djuric, M. G. Organ, Angew. Chem. Int. Ed. 2017, 56, 13347–13350.
a) A. P. Antonchick, L. Burgmann, Angew. Chem. Int. Ed. 2013, 52,
3267–3271; b) T. McCallum, L. Barriault, Chem. Sci. 2016, 7, 4754–
4758; c) P. Nuhant, M. S. Oderinde, J. Genovino, A. Juneau, Y. Gagné,
C. Allais, G. M. Chinigo, C. Choi, N. W. Sach, L. Bernier, Y. M. Fobian,
M. W. Bundesmann, B. Khunte, M. Frenette, O. O. Fadeyi, Angew.
Chem. Int. Ed. 2017, 56, 15309–15313; d) J. K. Matsui, D. N. Primer, G.
A. Molander, Chem. Sci. 2017, 8, 3512–3522; e) J. Dong, X. Lyu, Z.
Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem. Sci. 2019, 10, 976–
982; f) R. S. J. Proctor, R. J. Phipps, Angew. Chem. Int. Ed. 2019, 58,
13666–13699.
[17] C. R. Johnson, M. Haake, C. W. Schroeck, J. Am. Chem. Soc. 1970, 92,
6594–6598.
[18] a) J. M. Crance, N. Scaramozzino, A. Jouan, D. Garin, Antiviral Res.
2003, 58, 73–79; b) J. M. Brown. L. L. Rudel, Curr. Opin. Lipidol. 2010,
21, 192–197; c) J.-G. Park, G. Ávila-Pérez, A. Nogales, P. Blanco-
Lobo, J. C. de la Torre, L. Martínez-Sobrido, J. Virol. 2020, 94, 1–20.
[19] N-Heteroaromatic compounds such as 2-phenyl pyridine, 6-
methoxyquinoline, and isoquinoline did not provide the corresponding
products under the current reaction conditions, and most of starting
materials were recovered. These results might be due to the lower
electrophilicity of N-heteroaromatic compounds, compared to
iminoamido N-heterocyclic compounds as non-N-heteroaromatic
compounds. In addition, N-heterocycles such as N-substituted
quinazolin-4(3H)-one, quinazolin-4(1H)-one, and quinolin-2(1H)-one are
found to be unsuccessful substrates under the current reaction
conditions. See the Supporting Information for details (S50–S54).
[20] Remarkable deuteration on DMSO was detected in deuterium-labeling
experiments, indicating that the formation of sulfoxonium ylide A from
2a might be reversible. However, the possibility of rapid deuteration of
the formed DMSO in basic aqueous media cannot be excluded in the
reaction mechanism, which is supported by blank experiments. See the
Supporting Information (S91–S93).
[9]
a) J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2007,
129, 5332–5333; b) J. Ryu, S. H. Cho, S. Chang, Angew. Chem. Int. Ed.
2012, 51, 3677–3681; c) Y. Nakao, Y. Yamada, N. Kashihara, T.
Hiyama, J. Am. Chem. Soc. 2010, 132, 13666–13668; d) B. Xiao, Z.-J.
Liu, L. Liu, Y. Fu, J. Am. Chem. Soc. 2013, 135, 616–619; e) T. Andou,
Y. Saga, H. Komai, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed.
2013, 52, 3213–3216; f) X. Wu, J. W. T. See, K. Xu, H. Hirao, J. Roger,
J. C. Hierso, J. S. Zhou, Angew. Chem. Int. Ed. 2014, 53, 13573–
13577; g) T. Uemura, M. Yamaguchi, C. Naoto, Angew. Chem. Int. Ed.
2016, 55, 3162–3165; h) D. Zell, Q. Bu, M. Feldt, L. Ackermann, Angew.
Chem. Int. Ed. 2016, 55, 7408–7412.
[10] a) W. Jo, J. Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55,
9690–9694; b) W. Zhou, T. Miura, M. Murakami, Angew. Chem. Int. Ed.
2018, 57, 5139–5142; c) Y. Moon, B. Park, I. Kim, G. Kang, S. Shin, D.
Kang, M.-H. Baik, S. Hong, Nat. Commun. 2019, 10, 4117; d) G. R.
Mathi, Y. Jeong, Y. Moon, S. Hong, Angew. Chem. Int. Ed. 2020, 59,
2049–2054.
[21] P. Ghosh, N. Y. Kwon, S. Kim, S. Han, S. H. Lee, W. An, N. K. Mishra,
S. B. Han, I. S. Kim, 2020, Research Square preprint, DOI:
10.21203/rs.3.rs-39962/v1.
[11] a) S. Han, P. Chakrasali, J. Park, H. Oh, S. Kim, K. Kim, A. K. Pandey,
S. H. Han, S. B. Han, I. S. Kim, Angew. Chem. Int. Ed. 2018, 57,
12737–12740; b) P. Ghosh, N. Y. Kwon, S. Han, S. Kim, S. H. Han, N.
This article is protected by copyright. All rights reserved.