Journal of the American Chemical Society
Page 6 of 8
influence on the reactivity (9e-g). Acetophenone (9i) afford-
REFERENCES
1
2
3
4
5
6
7
8
ed pyridine moiety containing a tertiary alcohol in 40% yield.
Commercially available arylimines (11a-c) were also convert-
ed to substituted 4-pyridinemethanamines (12a-c) in moder-
ate yields. Furthermore, alkynone 13, was also tested, and the
corresponding product 14 was isolated in moderate yield
(50%), leaving the carbon-carbon triple bond and trime-
thylsilyl substituent untouched. Encouragingly, aliphatic
aldehyde or ketone (15, 17) could also be used as a coupling
partner for the synthesis 4-substituted pyridines 16 and 18 in
good yield, demonstrating the broad substrate scope of this
method.
(1) (a) Ollivier, C.; Renaud, P. Chem. Rev. 2001, 101, 3415-3434. (b)
Damency, V.; Renaud, P. Top. Curr. Chem. 2006, 263, 71-106. (c) Du-
ret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6,
5366-5382.
(2) (a) Lalevée, J.; Fouassier, J. P. In Encyclopedia of Radicals in
Chemistry, Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.;
Wiley: New York, 2012; Vol. 1, pp 37−56. (b) Denisov, E. T.; Denisova,
T. G.; Pokidova, T. S. In Handbook of Free Radical Initiators; Wiley:
New York, 2003; pp 767−781. (c) Yorimitsu, H.; Oshima, K. In Radi-
cals in Organic Synthesis; Renaud, P.; Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, Germany, 2001; Vol. 1, pp 11−27.
(3) (a) Renaud, P. In Encyclopedia of Radicals in Chemistry, Biolog
and Materials; Chatgilialoglu, C., Studer, A., Eds.; Wiley: New York,
2012; Vol. 1, pp 601−628. (b) Renaud, P.; Beauseigneur, A.; Brecht-
Forster, A.; Becattini, B.; Darmency, V.; Kandhasamy, S.; Montermi-
ni, F.; Ollivier, C.; Panchaud, P.; Pozzi, D.; Scanlan, E. M.; Schaffner,
A. P.; Weber, V. Pure Appl. Chem. 2007, 79, 223−233.
(4) Selected examples: (a) Ueng, S.-H.; Makhlouf Brahmi, M.; De-
rat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am.
Chem. Soc. 2008, 130, 10082−10083. (b) Ueng, S.-H.; Solovyev, A.;
Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.; New-
comb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009, 131,
11256−11262. (c) Walton, J. C.; Makhlouf Brahmi, M.; Fensterbank, L.;
Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran,
D. P. J. Am. Chem. Soc. 2010, 132, 2350−2358. (d) Walton, J. C.;
Brahmi, M. M.; Monot, J.; Fensterbank, L.; Malacria, M.; Curran, D.
P.; Lacôte, E. J. Am. Chem.Soc. 2011, 133, 10312−10321. (e) Lacôte, E.;
Curran, D. P.; Lalevée, J. Chimia 2012, 66, 382−385.
(5) Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. An-
gew. Chem. Int. Ed. 2016, 55, 5985-5989.
(6) During the revision of our manuscript, a work that utilizes the
boryl radical reactivity of the pyridine-boryl radical for the construc-
tion of C-B bond appeared: Zhang, L.; Jiao, L. J. Am. Chem. Soc. 2017,
139, 607-610.
(7) For some precedent examples of stable pyridine radicals, see:
(a) Kosower, E. M.; Poziomek, E. J. J. Am. Chem. Soc. 1964, 86, 5515-
5523. (b) Itoh, M.; Kosower, E. M. J. Am. Chem. Soc. 1968, 90, 1843-
1849. (c) Schroeder, B.; Neumann, W. P.; Hollaender, J.; Becker, H.-P.
Angew. Chem. Int. Ed. 1972, 11, 850-850.
(8) Significant spin delocalization from the boron atom to the lig-
and is reported for some other N-heterocycles ligated boryl radicals,
see: Tehfe, M. A.; Schweizer, S.; Chany, A. C.; Ysacco, C.; Clément, J.
L.; Gigmes, D.; Morlet-Savary, F.; Fouassier, J. P.; Neuburger, M.;
Tschamber, T.; Blanchard, N.; Lalevée, J. Chem. Eur. J. 2014, 20,
5054–5063.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3. CONCLUSIONS
In summary, a metal-free approach to the synthesis of C-4
substituted pyridine derivatives was predicted computation-
ally and verified experimentally. Theoretical calculations
revealed that the in situ generated pyridine-boryl radical
using 4-cyanopyridine and B2(pin)2 exhibits a carbon-radical
characteristic, and this boryl radical can be used as a bifunc-
tional “reagent”, which acts as not only a pyridine precursor
but also a boryl radical. The combined computational and
experimental study showed that the 4-substituted pyridine
derivatives could be synthesized using α, β-unsaturated ke-
tones via the proposed radical addition/coupling mechanism
with 4-cyanopyridine and B2(pin)2 as starting material. Sever-
al controlled experiments were conducted to probe the
mechanistic details. Then, the reaction was further expanded
to a wide range of boryl radical acceptors, including various
aldehydes and ketones, aryl imines and alkynone. Applica-
tion of this transformation in the modification of a compli-
cated pharmaceutical molecule was described. The reactions
occur under mild conditions without the use of any transi-
tion-metal catalysts or organometallic reagents. Efforts to
apply this in situ generated new boryl radical to other reac-
tions with the help of combined theoretical and experimental
studies are underway in our laboratory.
ASSOCIATED CONTENT
Supporting Information
Computational investigations, experiment procedure, com-
pound characterization, spectra. This material is available
(9) Bayer, H.; Batzl, C.; Hartmann, R. W.; Mannschreckt, A. J.
Med. Chem. 1991, 34, 2685-2691.
(10) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chem-
icaland Biological Perspectives; Pelletier, W. W., Ed.; Elsevier: New
York, 1999; Vol. 13, p 92.
AUTHOR INFORMATION
Corresponding Author
(11) (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem.
Soc. 2005, 127, 18020-18021. (b) Larivée, A.; Mousseau, J. J.; Charette,
A. B. J. Am. Chem. Soc. 2008, 130, 52-54. (c) Nakao, Y.; Kanyiva, K. S.;
Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448-2449. (d) Tobisu, M.;
Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070-12071. (e)
Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc.
2010, 132, 13666-13668. (f) Wasa, M.; Worrell, B. T.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2010, 49, 1275-1277. (g) Andou, T.; Saga, Y.; Komai, H.;
Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 3213-3216.
(12) (a) Minisci, F.; Giordano, C.; Vismara, E.; Levi, S.; Tortelli, V. J.
Am. Chem. Soc. 1984, 106, 7146-7150. (b) Minisci, F.; Fontana, F.;
Vismara, E. J. Heterocycl. Chem. 1990, 27, 79-96. (c) Seiple, I. B.; Su,
S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran,
P. S. J. Am. Chem. Soc. 2010, 132, 13194-13196. (d) Molander, G. A.;
Colombel, V.; Braz, V. A. Org. Lett. 2011, 13, 1852-1855. (e) Fujiwara,
Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R.
A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.;
Baran, P. S. Nature 2012, 492, 95-99. (f) O’Hara, F.; Blackmond, D. G.;
Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12122−12134. (g) Hoshikawa,
*shuhua@nju.edu.cn
*chengxu@nju.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (Grants No. 21333004, No. 21361140376,
No. 21572099 and No. 21332005). This work was partially
sponsored by Qing Lan Project. All calculations in this work
have been done on the IBM Blade cluster system in the High
Performance Computing Center of Nanjing University. We
dedicate this work to professor Qi-Lin Zhou on the occasion
of his 60th birthday.
ACS Paragon Plus Environment