+
A Luminescent Lanthanide Chemosensor for Zn2
A R T I C L E S
ment in particular enables more precise analysis of Zn2+
concentrations. The other approach for precise analyses is time-
resolved fluorescence (TRF) measurement, which offers a better
signal-to-noise ratio. Luminescent lanthanide complexes are
suitable for TRF measurement. So, our interest in Zn2+-selective
fluorescent sensor molecules was directed toward luminescent
lanthanide complexes, in particular complexes of the europium
and terbium trivalent ions (Eu3+ and Tb3+). These complexes
have large Stoke’s shifts (>200 nm), long luminescence
lifetimes of the order of milliseconds, and high water solubility,15
whereas the typical organic fluorescent compounds possess small
Stoke’s shifts (Stoke’s shifts of fluorescein and rhodamine are
∼25 and ∼20 nm, respectively)12c-e,16 and short fluorescence
lifetimes in the nanosecond region. The long-lived luminescence
of the lanthanides has the advantage that short-lived background
fluorescence and scattered light decay to negligible levels when
a pulse of excitation light is applied and the emitted light is
collected after an appropriate delay time. For these reasons,
sensitization of lanthanide luminescence has been exploited for
a number of useful signaling systems for time-resolved assays
in the fields of medicine, biotechnology, and biological sci-
ence.17 The lanthanide f-f transitions have low absorbance, so
the ligand structure requires a sensitizing chromophore for high
luminescence.18 Absorption by the chromophore results in
effective population of its triplet level, and efficient intramo-
lecular energy transfer occurs from the excited chromophore to
the lanthanide metal, whereby the metal becomes excited to the
emission state (Scheme 1).15a,17g,18b By means of appropriate
chromophore design, it is possible to develop luminescent
lanthanide complexes which can be used to sense various
biological molecules.
Scheme 1. (a) Schematic View of a Chromophore Incorporated
into a Europium Emittera and (b) the General
Chromophore-to-Europium Ion Sensitization Processb
a The emission from Eu3+ after excitation of the chromophore is shown.
bLight absorption and lowest-lying singlet excited state (S1) formation at
the sensitizing chromophore are followed by intersystem crossing (ISC),
resulting in population of the lowest-lying triplet excited state (T1).
Subsequent chromophore-to-Eu3+ energy transfer leads to population of a
metal-centered level, which deactivates from Eu3+-emitting states to the
relevant ground states.
the novel lanthanide complexes obtained showed a large en-
hancement of luminescence upon Zn2+ addition with an apparent
dissociation constant Kd of 2.6 nM (295 K, pH 7.4).19b However,
these compounds are unsuitable for biological applications,
because of their short excitation wavelength, small emission
enhancement, inconvenient pH sensitivity, insufficient selectivity
for Zn2+, etc. So, it is necessary to develop sensors with a longer
excitation wavelength for biological applications without losing
the high selectivity and high affinity for Zn2+. Moreover,
development of a simple sensor switch for Zn2+, which would
serve as both chromophore and Zn2+ receptor, would be useful.
From this background, we set out to develop a novel lanthanide
complex which can detect Zn2+ in biological systems, in the
relevant concentration range.
There are only a few reports about lanthanide-based lumi-
nescent chemosensors for the detection of Zn2+ 19
Parker and
.
co-workers have developed a luminescent lanthanide agent
which binds Zn2+ with an apparent dissociation constant Kd of
0.6 µM (295 K, pH 7.3).19a,c We employed a different design
approach for a ligand and an antenna in a previous report, and
(14) (a) Thompson, R. B.; Cramer, M. L.; Bozym, R.; Fierke, C. A. J. Biomed.
Opt. 2002, 7, 555-560. (b) Shults, M. D.; Pearce, D. A.; Imperiali, B. J.
Am. Chem. Soc. 2003, 125, 10591-10597. (c) Barondeau, D. P.; Kassmann,
C. J.; Tainer, J. A.; Getzoff, E. D. J. Am. Chem. Soc. 2002, 124, 3522-
3524.
(15) (a) Parker, D.; Williams, J. A. G. J. Chem. Soc., Dalton Trans. 1996, 3613-
3628. (b) Li, M.; Selvin, P. R. J. Am. Chem. Soc. 1995, 117, 8132-8138.
(c) Beck, J. B.; Rowan, S. J. J. Am. Chem. Soc. 2003, 125, 13922-13923.
(d) Franz, K. J.; Nitz, M.; Imperiali, B. ChemBioChem 2003, 4, 265-271.
(e) Liu, W.; Jiao, T.; Li, Y.; Liu, Q.; Tan, M.; Wang, H.; Wang, L. J. Am.
Chem. Soc. 2004, 126, 2280-2281. (f) Weibel, N.; Charbonnie`re, L. J.;
Guardigli, M.; Roda, A.; Ziessel, R. J. Am. Chem. Soc. 2004, 126, 4888-
4896. (g) Alpha, B.; Lehn, J. M.; Mathis, G. Angew. Chem., Int. Ed. Engl.
1987, 26, 266-267. (h) Petoud, S.; Cohen, S. M.; Bu¨nzli, J. C. G.;
Raymond, K. N. J. Am. Chem. Soc. 2003, 125, 13324-13325. (i) Maffeo,
D.; Williams, J. A. G. Inorg. Chim. Acta 2003, 355, 127-136.
Here we report the design and synthesis of the novel Zn2+
-
sensitive luminescent lanthanide chemosensor [Eu-7]; upon
complexation with Zn2+, it exhibits strong, long-lived lumines-
cence (of the order of milliseconds), and it also offers a large
Stoke’s shift (>250 nm), high water-solubility, and high
selectivity for Zn2+ (Figure 1).
(16) Mizukami, S.; Kikuchi, K.; Higuchi, T.; Urano, Y.; Mashima, T.; Tsuruo,
T.; Nagano, T. FEBS Lett. 1999, 453, 356-360.
(17) (a) Kolb, A. J.; Kaplita, P. V.; Hayes, D. J.; Park, Y. W.; Pernell, C.; Major,
J. S.; Mathis, G Drug DiscoVery Today 1998, 3, 333-342. (b) Enomoto,
K.; Araki, A.; Nakajima, T.; Ohta, H.; Dohi, K.; Pre´audat, M.; Seguin, P.;
Mathis, G.; Suzuki, R.; Kominami, G.; Takemoto, H. J. Pharm. Biomed.
Anal. 2002, 28, 73-79. (c) Beeby, A.; Botchway, S. W.; Clarkson, I. M.;
Faulkner, S.; Parker, A. W.; Parker, D.; Williams, J. A. G. J. Photochem.
Photobiol. B: Biology 2000, 57, 83-89. (d) Frias, J. C.; Bobba, G.; Cann,
M. J.; Hutchison, C. J.; Parker, D. Org. Biomol. Chem. 2003, 1, 905-907.
(e) Barrios, A. M.; Craik, C. S. Bioorg. Med. Chem. Lett. 2002, 12, 3619-
3623. (f) Vereb, G.; Jares-Erijman, E.; Selvin, P. R.; Jovin, T. M. Biophys.
J. 1998, 74, 2210-2222. (g) Matsumoto, K.; Nojima, T.; Sano, H.; Majima,
K. Macromol. Symp. 2002, 186, 117-121. (h) Karvinen, J.; Hurskainen,
P.; Gopalakrishnan, S.; Burns, D.; Warrior, U.; Hemmila¨, I. J. Biomol.
Screen. 2002, 7, 223-231. (i) Pre´audat, M.; Ouled-Diaf, J.; Alpha-Bazin,
B.; Mathis, G.; Mitsugi, T.; Aono, Y.; Takahashi, K.; Takemoto, H. J.
Biomol. Screen. 2002, 7, 267-274. (j) Lin, Z.; Wu, M.; Scha¨ferling, M.;
Wolfbeis, O. S. Angew. Chem., Int. Ed. 2004, 43, 1735-1738.
Results and Discussion
Design and Synthesis of [Eu-7] and [Gd-7]. N,N,N′,N′-
Tetrakis(2-pyridylmethyl)ethylenediamine20 (TPEN) shows high
selectivity for Zn2+ over other metal ions found under physi-
ological conditions, such as Ca2+ and Mg2+. Accordingly, we
(18) (a) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J.
A. K. Chem. ReV. 2002, 102, 1977-2010. (b) Quici, S.; Marzanni, G.;
Carazzini, M.; Anelli, P. L.; Botta, M.; Gianolio, E.; Accorsi, G.; Armaroli,
N.; Barigelletti, F. Inorg. Chem. 2002, 41, 2777-2784. (c) Latva, M.;
Takalo, H.; Mukkala, V. M.; Matachescu, C.; Rodr´ıguez-Ubis, J. C.;
Kankare, J. J. Lumin. 1997, 75, 149-169. (d) Dadabhoy, A.; Faulkner, S.;
Sammes, P. G. J. Chem. Soc., Perkin Trans. 2 2002, 348-357.
9
J. AM. CHEM. SOC. VOL. 126, NO. 39, 2004 12471