2474
P. Habonimana et al.
LETTER
OH
O
O
mollugin (1) (61% total yield) in a short reaction sequence
was developed. The reaction sequence was based upon
electrophilic addition of 3-methyl-3-buten-1-ol onto the
ortho position of an aromatic alcohol in the presence of
BF3, immediately followed by pyran ring formation and
subsequent DDQ oxidation. This pathway reveals the
highest-yielding synthesis of mollugin at this moment.
OH
OH
O
1) CH2N2, Et2O
2)
OMe
OH
OH
(1.5 equiv)
BF3·OEt2 (1.2 equiv)
THF, ∆, 64 h
6
2 (75%)
OH
O
NBS (2.5 equiv)
BPO (0.1 equiv)
CCl4, ∆, 18 h
OMe
Br
Acknowledgment
O
The authors are indebted to the Research Foundation – Flanders
(FWO-Vlaanderen), the Burundian Government, and the IWT
(Flemish Institute for the promotion of Scientific Technological
Research in Industry) for financial support.
7 (58%)
DDQ (1.2 equiv)
OH
O
dioxane, ∆, 16 h
22%
2
OMe
References and Notes
DDQ (1.2 equiv)
toluene, ∆, 18 h
O
(1) Itokawa, H.; Mihara, K.; Takeya, K. Chem. Pharm. Bull.
1983, 31, 2353.
2
1
81%
(2) (a) Ho, L.-K.; Don, M.-J.; Chen, H.-C.; Yeh, S.-F.; Chen, J.-
M. J. Nat. Prod. 1996, 59, 330. (b) Itokawa, H.; Takeya, K.;
Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Chem.
Pharm. Bull. 1986, 34, 3762.
(3) Kawasaki, Y.; Goda, Y.; Yoshishira, K. Chem. Pharm. Bull.
1992, 40, 1504.
Scheme 4
in 75% yield. The reaction proceeded faster when per-
formed in dioxane for 16 hours but the observed yield was
a little lower (61%). BF3 activates the alcohol moiety by
borate formation. Subsequent ortho-alkylation of the aro-
matic alcohol by the homoallylborate and cyclization by
attack of the phenol oxygen onto the proton-activated car-
bon–carbon double bond of the isoprenyl group afforded
3,4-dihydromollugin (2).
(4) Chung, M.-L.; Jou, S.-J.; Cheng, T.-H.; Lin, C.-N. J. Nat.
Prod. 1994, 57, 313.
(5) (a) Gonzalez, A. G.; Barroso, J. T.; Cardona, R. J.; Medina,
J. M.; Rodriguez, L. An. Quim. 1977, 73, 538. (b) Itokawa,
H.; Qiao, Y. F.; Takeya, K. Phytochemistry 1989, 28, 3465.
(c) Itokawa, H.; Qiao, Y. F.; Takeya, K. Phytochemistry
1991, 30, 637. (d) Hua, H. M.; Wang, S. X.; Wu, L. J.; Li,
X.; Zhu, T. R. Acta Pharm. Sinica 1992, 27, 279. (e) Kuo,
S.-C.; Chen, P.-R.; Lee, S.-W.; Chen, Z.-T. J. Chin. Chem.
Soc. (Taipei) 1995, 42, 869. (f) Inoue, K.; Shiobara, Y.;
Naynshiro, H.; Inouye, H.; Wilson, G.; Zenk, M. H.
Phytochemistry 1984, 23, 307.
(6) (a) Wanyoike, G. N.; Chhabra, S. C.; Lang’at-Thoruwa, C.
C.; Omar, S. A. J. Ethnopharmacol. 2004, 90, 129. (b) Cos,
P.; Hermans, N.; De Bruyne, T.; Apers, S.; Sindambiwe, J.
P.; Vanden Berghe, D.; Pieters, L.; Vlietinck, A. J. J.
Ethnopharmacol. 2002, 79, 155. (c) Van Puyvelde, L.; El
Hady, S.; De Kimpe, N.; Feneau-Dupont, J.; Declercq, J. P.
J. Nat. Prod. 1998, 61, 1020. (d) Hari, L.; De Buyck, L.; De
Pooter, H. L. Phytochemistry 1991, 30, 172. (e) Chabra, S.
C.; Mahunnah, R. L. A.; Mshiu, E. N. J. Ethnopharmacol.
1991, 33, 143.
In a next step, 3,4-dihydromollugin was oxidized to the
desired mollugin. The literature9 revealed an existing
method using DDQ in dioxane resulting in mollugin in
72% yield, but in our hands the yields were much lower
(22%), even after repeated attempts. In an attempt to
search for alternatives, oxidation using Pd/C in toluene
was tried, but only starting material was recovered. The
reaction of 3,4-dihydromollugin (2) with one equivalent
of NBS and 0.1 equivalent of benzoyl peroxide (BPO) in
tetrachloromethane did not result in the expected mollu-
gin (1) but instead gave rise to the interesting and new
compound 3-bromomollugin ( 7) in 40% yield.19 Appar-
ently, the radical bromination–dehydrobromination se-
quence afforded mollugin, but in the given conditions
mollugin reacts further with NBS to give rise to 3-bromo-
mollugin. The yield of this reaction could be improved to
58% by using 2.5 equivalents of NBS in tetrachlo-
romethane. Finally, it was found that mollugin could be
obtained in 81% yield by using a DDQ oxidation of dihy-
dromollugin (2) in toluene, which is an improved oxida-
tion procedure compared to the literature.9
(7) Schildknecht, H.; Straub, F. Liebigs Ann. Chem. 1976, 1307.
(8) Heide, L.; Leistner, E. J. Chem. Soc., Chem. Commun. 1981,
334.
(9) Ho, L.-K.; Yu, H.-J.; Ho, C.-T.; Don, M.-J. J. Chin. Chem.
Soc. 2001, 48, 77.
(10) Claessens, S.; Kesteleyn, B.; Nguyen, V. T.; De Kimpe, N.
Tetrahedron 2006, 62, 8419.
(11) Giles, R. G. F.; Green, I. R.; Hugo, V. I.; Mitchell, P. R. K.;
Yorke, S. C. J. Chem. Soc., Perkin Trans. 1 1983, 2309.
(12) (a) Khanna, R. N.; Sharma, P. K.; Thomson, R. H. J. Chem.
Soc., Perkin Trans. 1 1987, 1821. (b) Nicolaou, K. C.;
Sasmal, P. K.; Xu, H. J. Am. Chem. Soc. 2004, 126, 5493.
(13) Wipf, P.; Weiner, W. S. J. Org. Chem. 1999, 64, 5321.
(14) Lumb, J. P.; Trauner, D. Org. Lett. 2005, 7, 5865.
(15) Naruta, Y.; Uno, H.; Maruyama, K. J. Chem. Soc., Chem.
Commun. 1981, 1277.
In summary, in this report, the present synthetic strategies
for mollugin are based upon the observation of possible
biosynthetic precursors. Two alternative precursors were
presented and this resulted in two different approaches.
Both worked out well but the second strategy, based upon
3,4-dihydromollugin as a precursor is the most promising.
In this way, a synthesis which produced the naturally
occurring 3,4-dihydromollugin (2) (75% total yield) and
(16) Naruta, Y. J. Org. Chem. 1980, 45, 4097.
(17) Jacobsen, N.; Torsell, K. Acta Chem. Scand. 1973, 27, 3211.
Synlett 2006, No. 15, 2472–2475 © Thieme Stuttgart · New York